
UNIT – I

LOGIC

➢ TF Statement

➢ Connectives

➢ Atomic and Compound Statements

➢ WFF

➢ Truth Table of a Formula

➢ Tautology

➢ Tautological Implications and Equivalence of Formulae

--

LOGIC

TF Statement

 A proposition is a collection of declarative statements that has either a truth value

"true” or a truth value "false". A propositional consists of propositional variables and

connectives. We denote the propositional variables by capital letters (A, B, etc). The

connectives connect the propositional variables.

Eg

• "Man is Mortal", it returns truth value “TRUE”

• "12 + 9 = 3 – 2", it returns truth value “FALSE”

The following is not a Proposition −

• "A is less than 2". It is because unless we give a specific value of A, we cannot say

whether the statement is true or false.

Connectives

A Logical Connective is a symbol which is used to connect two or more propositional

or predicate logics in such a manner that resultant logic depends only on the input logics and

the meaning of the connective used.

Generally there are five connectives which are ,

• OR (∨)

• AND (∧)

• Negation/ NOT (¬)

• Implication / if-then (→)

• If and only if (⇔).

OR (∨)

 The OR operation of two propositions A and B (written as A ∨ B) is true if at least

any of the propositional variable A or B is true.

The truth table is as follows −

A B A ∨ B

True True True

True False True

False True True

False False False

AND (∧)

 The AND operation of two propositions A and B (written as $A \land B$) is true if

both the propositional variable A and B is true.

The truth table is as follows −

A B A ∧ B

True True True

True False False

False True False

False False False

Negation (¬)

The negation of a proposition A (written as ¬ A) is false when A is true and is true

when A is false.

The truth table is as follows −

A ¬ A

A ¬ A

True False

False True

Implication / if-then (→)

 An implication A → B is the proposition “if A, then B”. It is false if A is true and B

is false. The rest cases are true.

The truth table is as follows −

A B A → B

True True True

True False False

False True True

False False True

If and only if (⇔)

A ⇔ B is bi-conditional logical connective which is true when p and q are same, i.e.

both are false or both are true.

The truth table is as follows −

A B A ⇔ B

True True True

True False False

False True False

False False True

Atomic and Compound Statements

An atomic sentence is an atomic formula containing no variables. It follows that an

atomic sentence contains no logical connectives, variables or quantifiers. A sentence

consisting of one or more sentences and a logical connective is a compound (or molecular)

sentence.

Eg

It is raining - simple statement

Jack and jill went up the hill - compound statement

Well-formed Formula (wff)

Not all strings can represent propositions of predicate logic. Those that produce a

proposition when their symbols are interpreted are called well-formed formulas of the first

order predicate logic. A predicate name followed by a list of variables such as P(x, y),

where P is a predicate name, and x and y are variables, is called an atomic formula.

Wffs are constructed using the following rules:

1. True and False are wffs.

2. Each propositional constant (i.e. specific proposition).

3. Each atomic formula (i.e. a specific predicate with variables) is a wff.

4. If A and B are wffs, then so are ¬A, (A ˅ B), (A˄ B), (A → B), and (A ↔ B).

Parsing Tree

 Every wff we can associate a tree called a parsing tree.

Eg

The Truth Table of a Formula

A truth table shows how the truth or falsity of a compound statement depends on the

truth or falsity of the simple statements from which it's constructed.

Eg

 Construct a truth table for the formula .

Tautology

A tautology is a formula which is "always true" --- that is, it is true for every

assignment of truth values to its simple components. You can think of a tautology as a rule of

logic.

The opposite of a tautology is a contradiction, a formula which is "always false". In

other words, a contradiction is false for every assignment of truth values to its simple

components.

Eg

Show that is a tautology.

I construct the truth table for and show that the formula is always true.

The last column contains only T's. Therefore, the formula is a tautology.

Tautological Implications and Equivalence of Formulae

Tautologies by adding ones involving the conditional and the biconditional. From

now on, we use small letters like p and q to denote atomic statements only, and uppercase

letters like A and B to denote statements of all types, compound or atomic.

We first look at some tautological implications, tautologies of the form A B. You should

check the truth table of each of the statements we give to see that they are, indeed,

tautologies.

Eg

p q p q (p q) p [(p q) p] q

T T T T T

T F F F T

F T T F T

F F T F T

REVIEW QUESTIONS

1) Define Well Formed formula.

2) What is the truth table for conditional statement?

3) Discuss about tautological implication.

4) Explain about Connectives.

5) Show that (P→Q)˄(R→Q)and (P˅R)→Q are equivalent.

6) Prove whether the following formula (P˄(P↔Q))→Q) is a tautology or

not.

7) What is meant by atomic and compound statements.

8) Define tautology.

UNIT – II

NORMAL FORMS

➢ Principal Normal Forms

➢ Theory of Inference

➢ Open Statements

➢ Quantifiers

➢ Valid Formulae and Equivalence

➢ Theory of Inference for Predicate Calculus

--

NORMAL FORMS

Principal Normal Form

Disjunctive Normal Forms (DNF)

A formula which is equivalent to a given formula and which consists of a sum of

elementary products is called a disjunctive normal form of given formula.

Eg

(P ∧ ~ Q) ∨ (Q ∧ R) ∨ (~ P ∧ Q ∧~ R)

• The DNF of formula is not unique.

Conjunctive Normal Form (CNF)

A formula which is equivalent to a given formula and which consists of a product of

elementary products is called a conjunctive normal form of given formula.

Eg

(P~ ∨ Q) ∧ (Q ∨ R) ∧ (~ P ∨ Q ∨ ~ R)

• The CNF of formula is not unique.

• If every elementary sum in CNF is tautology, then given formula is also

tautology.

Principle Disjunctive Normal Form (PDNF)

An equivalent formula consisting of disjunctions of minterms only is called the

principle disjunctive normal form of the formula.

It is also known as sum-of-products canonical form.

Eg

(P ∧ ~ Q ∧ ~ R) ∨ (P ∧ ~ Q ∧ R) ∨ (~ P ∧ ~ Q ∧ ~ R)

• The minterm consists of conjunctions in which each statement variable or its

negation, but not both, appears only once.

• The minterms are written down by including the variable if its truth value is T

and its negation if its truth value is F.

Principle Conjunctive Normal Form (PCNF)

An equivalent formula consisting of conjunctions of maxterms only is called the

principle conjunctive normal form of the formula.

It is also known as product-of-sums canonical form.

Eg

(P ∨ ~ Q ∨ ~ R) ∧ (P ∨ ~ Q ∨ R) ∧ (~ P ∨ ~ Q ∨ ~ R)

• The maxterm consists of disjunctions in which each variable or its negation,

but not both, appears only once.

• The dual of a minterm is called a maxterm.

• Each of the maxterm has the truth value F for exactly one combination of the

truth values of the variables.

• The maxterms are written down by including the variable if its truth value is F

and its negation if its truth value is T.

Eg

Obtain the PDNF of ( P   Q)→ (P ↔  Q)

P Q  P  Q P  Q ( P  Q) → (P ↔  Q)

T T F F T

T F T T T

F T T T T

F F T F F

From the above table

( P  Q)→ (P ↔  Q)  (P Q)  (P  Q)  ( P Q)

 ( P Q)  (P  Q)  (P Q)

Eg

Obtain PDNF for P→ ((P→ Q   ( Q   P))).

Solution

P→ ((P→ Q   ( Q   P)))  P→ ((P→ Q  (P  Q)))

 P→ ((P→ P  Q))

 P→ ( P  (P  Q))

  P  ( P  (P  Q))

  P  (P  Q)

 ( P  (Q   Q))  (P  Q)

 ( P  Q)  ( P   Q)  (P  Q)

 ( P   Q)  ( P  Q)  (P  Q)

Eg

Obtain PCNF for A : ( P→ R)  ((Q→ P)  (P→ Q)).

Solution

A  (P R) (( Q P) ( P Q))

 (P R (Q  Q))  (P  Q (R  R))  ( P Q (R  R))

 (P Q R) (P  Q R) (P  Q R) (P  Q  R) ( P Q R) ( P Q  R)

 (P Q R)  (P  Q R)  (P  Q  R)  ( P Q R)  ( P Q  R)

Theory of Inference

A proof is an argument from hypotheses (assumptions) to a conclusion. Each step of

the argument follows the laws of logic. In mathematics, a statement is not accepted as valid

or correct unless it is accompanied by a proof. This insistence on proof is one of the things

that sets mathematics apart from other subjects.

Writing proofs is difficult; there are no procedures which you can follow which will

guarantee success. The patterns which proofs follow are complicated, and there are a lot of

them. You can't expect to do proofs by following rules, memorizing formulas, or looking at a

few examples in a book.

For this reason, I'll start by discussing logic proofs. Since they are more highly patterned than

most proofs, they are a good place to start. They'll be written in column format, with each

step justified by a rule of inference. Most of the rules of inference will come from

tautologies. Since a tautology is a statement which is "always true", it makes sense to use

them in drawing conclusions.

Like most proofs, logic proofs usually begin with premises --- statements that you're allowed

to assume. The conclusion is the statement that you need to prove. The idea is to operate on

the premises using rules of inference until you arrive at the conclusion.

Rule of Premises. You may write down a premise at any point in a proof.

The second rule of inference is one that you'll use in most logic proofs. It is sometimes

called modus ponendo ponens, but I'll use a shorter name.

Modus Ponens. If you know P and , you may write down Q.

In the rules of inference, it's understood that symbols like "P" and "Q" may be replaced

by any statements, including compound statements. I'll say more about this later.

Here is a simple proof using modus ponens:

I'll write logic proofs in 3 columns. The statements in logic proofs are numbered so that you

can refer to them, and the numbers go in the first column. The actual statements go in the

second column. The third column contains your justification for writing down the statement.

Thus, statements 1 (P) and 2 () are premises, so the rule of premises allows me to

write them down. Modus ponens says that if I've already written down P and ---

on any earlier lines, in either order --- then I may write down Q. I did that in line 3, citing the

rule ("Modus ponens") and the lines (1 and 2) which contained the statements I needed to

apply modus ponens.

As I noted, the "P" and "Q" in the modus ponens rule can actually stand for compound

statements --- they don't have to be "single letters". For example:

There are several things to notice here. First, is taking the place of P in the modus

ponens rule, and is taking the place of Q. That is, and are compound

statements which are substituted for "P" and "Q" in modus ponens.

Notice also that the if-then statement is listed first and the "if"-part is

listed second. It doesn't matter which one has been written down first, and long as both pieces

have already been written down, you may apply modus ponens.

Finally, the statement didn't take part in the modus ponens step. Perhaps this is part of a

bigger proof, and will be used later. The fact that it came between the two modus ponens

pieces doesn't make a difference.

As usual in math, you have to be sure to apply rules exactly. For example, this is not a valid

use of modus ponens:

Do you see why? To use modus ponens on the if-then statement , you need the

"if"-part, which is . You only have P, which is just part of the "if"-part. That's not

good enough.

Double Negation. In any statement, you may substitute P for or for P (and write

down the new statement).

For example, in this case I'm applying double negation with P replaced by :

You can also apply double negation "inside" another statement:

Double negation comes up often enough that, we'll bend the rules and allow it to be used

without doing so as a separate step or mentioning it explicitly. I'll demonstrate this in the

examples for some of the other rules of inference.

Modus Tollens. If you know and , you may write down .

This is a simple example of modus tollens:

In the next example, I'm applying modus tollens with P replaced by C and Q replaced

by :

The last example shows how you're allowed to "suppress" double negation steps. Do you see

how this was done? If I wrote the double negation step explicitly, it would look like this:

When you apply modus tollens to an if-then statement, be sure that you have the negation of

the "then"-part. The following derivation is incorrect:

To use modus tollens, you need , not Q.

This is also incorrect:

This looks like modus ponens, but backwards. There is no rule that allows you to do this: The

deduction is invalid.

Disjunctive Syllogism. If you know and , you may write down Q.

Here's a simple example of disjunctive syllogism:

In the next example, I'm applying disjunctive syllogism with replacing P and D

replacing Q in the rule:

In the next example, notice that P is the same as , so it's the negation of .

This is another case where I'm skipping a double negation step. Without skipping the step, the

proof would look like this:

DeMorgan's Law. In any statement, you may substitute:

1. for .

2. for .

3. for .

4. for .

As usual, after you've substituted, you write down the new statement.

DeMorgan's Law tells you how to distribute across or , or how to factor out

of or . To distribute, you attach to each term, then change to or to . To

factor, you factor out of each term, then change to or to .

Note that it only applies (directly) to "or" and "and". We'll see how to negate an "if-then"

later.

Here's DeMorgan applied to an "or" statement:

Notice that a literal application of DeMorgan would have given . I changed this

to , once again suppressing the double negation step.

Conditional Disjunction. If you know , you may write down .

If you know , you may write down .

Here's the first direction:

And here's the second:

The first direction is key: Conditional disjunction allows you to convert "if-then" statements

into "or" statements.

We'll see below that biconditional statements can be converted into pairs of conditional

statements. Together with conditional disjunction, this allows us in principle to reduce the

five logical connectives to three (negation, conjunction, disjunction). But DeMorgan allows

us to change conjunctions to disjunctions (or vice versa), so in principle we could do

everything with just "or" and "not". The reason we don't is that it would make our statements

much longer: The use of the other connectives is like shorthand that saves us writing.

In additional, we can solve the problem of negating a conditional that we mentioned earlier.

We've derived a new rule! Let's write it down.

Negating a Conditional. If you know , you may write down .

If you know , you may write down .

The first direction is more useful than the second. Personally, I tend to forget this rule and

just apply conditional disjunction and DeMorgan when I need to negate a conditional. But

you may use this if you wish.

Constructing a Conjunction. If you know P and Q, you may write down .

Think about this to ensure that it makes sense to you. If is true, you're saying that P is

true and that Q is true. So on the other hand, you need both P true and Q true in order to say

that is true.

Here's an example. Notice that I put the pieces in parentheses to group them after

constructing the conjunction.

Rule of Syllogism. If you know and , then you may write down .

The Rule of Syllogism says that you can "chain" syllogisms together. For example:

Definition of Biconditional. If you know , you may write down and you

may write down . If you know and , you may write down .

First, a simple example:

By the way, a standard mistake is to apply modus ponens to a biconditional (" "). Modus

ponens applies to conditionals (" "). So this isn't valid:

With the same premises, here's what you need to do:

Decomposing a Conjunction. If you know , you may write down P and you may

write down Q.

This rule says that you can decompose a conjunction to get the individual pieces:

Note that you can't decompose a disjunction!

What's wrong with this? If you know that is true, you know that one of P or Q must

be true. The problem is that you don't know which one is true, so you can't assume that either

one in particular is true.

On the other hand, it is easy to construct disjunctions.

Constructing a Disjunction. If you know P, and Q is any statement, you may write

down .

This says that if you know a statement, you can "or" it with any other statement to construct a

disjunction.

Notice that it doesn't matter what the other statement is! Once you know that P is true, any

"or" statement with P must be true: An "or" statement is true if at least one of the pieces is

true.

The next two rules are stated for completeness. They are easy enough that, as with double

negation, we'll allow you to use them without a separate step or explicit mention.

Commutativity of Conjunctions. In any statement, you may

substitute for (and write down the new statement).

Commutativity of Disjunctions. In any statement, you may

substitute for (and write down the new statement).

Here is commutativity for a conjunction:

Here is commutativity for a disjunction:

Before I give some examples of logic proofs, I'll explain where the rules of inference come

from. You've probably noticed that the rules of inference correspond to tautologies. In fact,

you can start with tautologies and use a small number of simple inference rules to derive all

the other inference rules.

Three of the simple rules were stated above: The Rule of Premises, Modus Ponens, and

Constructing a Conjunction. Here are two others. We've been using them without mention in

some of our examples if you look closely.

Equivalence You may replace a statement by another that is logically equivalent. (Recall that

P and Q are logically equivalent if and only if is a tautology.)

For instance, since P and are logically equivalent, you can replace P

with or with P. This is Double Negation. As I mentioned, we're saving time by

not writing out this step.

Substitution. You may take a known tautology and substitute for the simple statements.

This amounts to my remark at the start: In the statement of a rule of inference, the simple

statements ("P", "Q", and so on) may stand for compound statements. "May stand for" is the

same as saying "may be substituted with". We've been doing this without explicit mention.

Here's an example. The Disjunctive Syllogism tautology says

Suppose you have and as premises. Here's how you'd apply the

simple inference rules and the Disjunctive Syllogism tautology:

Notice that I used four of the five simple inference rules: the Rule of Premises, Modus

Ponens, Constructing a Conjunction, and Substitution. In line 4, I used the Disjunctive

Syllogism tautology by substituting

(Some people use the word "instantiation" for this kind of substitution.)

The advantage of this approach is that you have only five simple rules of inference. The

disadvantage is that the proofs tend to be longer. With the approach I'll use, Disjunctive

Syllogism is a rule of inference, and the proof is:

Here are some proofs which use the rules of inference. In each case, some premises ---

statements that are assumed to be true --- are given, as well as a statement to prove. A proof

consists of using the rules of inference to produce the statement to prove from the premises.

Example. Premises: .

Prove: C.

Example. Premises: .

Prove: .

Example. Premises: .

Prove: B.

 Open Statements

An open statement in x associates with the name of each object in a collection, called

the universe of the open statement, a logical statement. Such a logical statement is called

a component of the open statement. It is obtained by replacing the x (or any other variable

letter) in the open statement with the name or symbol of the object.

Eg

 Suppose the open statement in x is: "x is greater than 3". The universe is the

collection {1,2,3,4,5} of the first five natural numbers. Replace the x by each of these

numbers to get the five components (or component statements):

 1 is greater than 3 component is F 1 receives an F

 2 is greater than 3 component is F 2 receives an F

 3 is greater than 3 component is F 3 receives an F

 4 is greater than 3 component is T 4 receives an T

 5 is greater than 3 component is T 5 receives an T

Quantifiers

We need quantifiers to formally express the meaning of the words “all” and “some”.

The two most important quantifiers are: Universal quantifier, “For all”. Symbol:∀

Existential quantifier, “There exists”. Symbol:∃∀x P(x)asserts that P(x)is true for every x

in the domain. ∃x P(x)asserts that P(x)is true for some x in the domain. The quantifiers are

said to bind the variable x in these expressions. Variables in the scope of some quantifier are

called bound variables. All other variables in the expression are called free variables. A

propositional function that does not contain any free variables isa proposition and has a truth

value.

The Universal Quantifier

The expression: x P(x), denotes the universal quantification of the atomic formula

P(x). Translated into the English language, the expression is understood as: "For all x,

P(x) holds", "for each x, P(x) holds" or "for every x, P(x) holds". is called the universal

quantifier, and x means all the objects x in the universe. If this is followed by P(x) then the

meaning is that P(x) is true for every object x in the universe. For example, "All cars have

wheels" could be transformed into the propositional form, x P(x), where:

• P(x) is the predicate denoting: x has wheels, and

• the universe of discourse is only populated by cars.

The Existential Quantifier

The expression: xP(x), denotes the existential quantification of P(x). Translated into

the English language, the expression could also be understood as: "There exists an x such

that P(x)" or "There is at least one x such that P(x)" is called the existential quantifier,

and x means at least one object x in the universe. If this is followed by P(x) then the

meaning is that P(x) is true for at least one object x of the universe. For example, "Someone

loves you" could be transformed into the propositional form, x P(x), where:

• P(x) is the predicate meaning: x loves you,

• The universe of discourse contains (but is not limited to) all living creatures.

Eg

Premises:

a. “It’s not sunny and it’s colder than yesterday”¬p∧q

b. “We will go swimming only if it’s sunny.”r→p

c. “If we don’t go swimming then we will take canoe trip.”¬r→s

d. “If we take a canoe trip, then we will be home by sunset.”s→t

Conclusion: “We will be home by sunset.”t.

Solution

(1) ¬p∧q Premise

(2) ¬p Simplification rule using (1)

(3) r→p Premise

(4) ¬r MT using (2) (3)

(5) ¬r→s Premise

(6) s MP using (4) (5)

(7) s→t Premise

(8) t MP using (6) (7)

This is a valid argument showing that from the premises (a), (b), (c)and (d),

we can prove the conclusion t.

Eg

Suppose P→Q; ¬P→R; Q→S. Prove that ¬R→S.

Solution

(1) P→Q Premise

(2) ¬P∨Q Logically equivalent to (1)

(3) ¬P→R Premise

(4) P∨R Logically equivalent to (3)

(5) Q∨R Apply resolution rule to (2)(4)

(6) ¬R→Q Logically equivalent to (5)

(7) Q→S Premise

(8) ¬R→S Apply HS rule to (6)(7).

Theory of Inference for Predicate Calculus

Rule of Inference Name

(i) ∀xP(x)→p(c) for an arbitrary element c. Universal Specification(US)

(ii) P(c) for an arbitrary element c ∀xP(x). Universal Generalization(UG)

(iii) ∃xP(x)→p(c) for some element c. Existential Specification(ES)

 (iv) p(c) for some element c ∃xP(x). Existential Generalization(EG)

Eg

Suppose: all natural numbers are integers; there exists a natural number;

Prove that there exists an integer.

Solution

We can formalize this problem as follows.

N(x): x is a natural number.

I(x): x is an integer.

Premise:∀x(N(x)→I(x)),∃x N(x) Need to prove:∃x I(x)

(1) ∃x N(x) Premise

(2) N(c) Apply existential specification rule to (1)

(3) ∀x(N(x)→I(x)) Premise

(4) N(c)→I(c) Apply universal specification rule to (3)

(5) I(c) Apply MP rule to (2)(4)

(6) ∃x I(x) Apply existential generalization rule to (5)

REVIEW QUESTIONS

1) Define conjunctive normal form.

2) What is meant by Open statement.

3) Obtain PCNF and PDNF of (¬p→r)˄(q↔p).

4) Obtain the conjunctive normal form ¬(p˅q)↔(p˄q)

5) Obtain PDNF of (P˄Q)˅(¬P˄R)˅(Q˄R)

6) What is disjunctive normal? give example.

7) Define PCNF and PDNF.

8) What is universal quantifier ? Give example.

UNIT – III

GRAPH THEORY

➢ Basic Concepts

➢ Matrix Representation of Graphs

➢ Trees

➢ Spanning Trees

➢ Rooted Trees

➢ Binary Trees

--

GRAPH THEORY

Basic Concepts

Graph

A graph is a pictorial representation of a set of objects where some pairs of objects

are connected by links. The interconnected objects are represented by points termed

as vertices, and the links that connect the vertices are called edges.

Formally, a graph is a pair of sets (V, E), where V is the set of vertices and E is the

set of edges, connecting the pairs of vertices. Take a look at the following graph

In the above graph,

V = {a, b, c, d, e}

E = {ab, ac, bd, cd, de}

Loop

In a graph, if an edge is drawn from vertex to itself, it is called a loop.

Eg

In the above graph, V is a vertex for which it has an edge (V, V) forming a loop.

Parallel Edges

In a graph, if a pair of vertices is connected by more than one edge, then those edges

are called parallel edges.

Eg

In the above graph, ‘a’ and ‘b’ are the two vertices which are connected by two edges ‘ab’

and ‘ab’ between them. So it is called as a parallel edge.

Simple Graph

A graph with no loops and no parallel edges is called a simple graph.

• The maximum number of edges possible in a single graph with ‘n’ vertices

is nC2 where nC2 = n(n – 1)/2.

• The number of simple graphs possible with ‘n’ vertices = 2nc2 = 2n(n-1)/2.

Eg

In the following graph, there are 3 vertices with 3 edges which is maximum

excluding the parallel edges and loops. This can be proved by using the above formulae.

The maximum number of edges with n=3 vertices −

nC2 = n(n–1)/2

= 3(3–1)/2

= 6/2

= 3 edges

Directed Graph

In a directed graph, each edge has a direction.

Eg

In the above graph, we have seven vertices ‘a’, ‘b’, ‘c’, ‘d’, ‘e’, ‘f’, and ‘g’, and eight

edges ‘ab’, ‘cb’, ‘dc’, ‘ad’, ‘ec’, ‘fe’, ‘gf’, and ‘ga’. As it is a directed graph, each edge bears

an arrow mark that shows its direction. Note that in a directed graph, ‘ab’ is different from

‘ba’.

Degree of Vertex

It is the number of vertices adjacent to a vertex V.

Notation − deg(V).

In a simple graph with n number of vertices, the degree of any vertices is −

deg(v) ≤ n – 1 ∀ v ∈ G

A vertex can form an edge with all other vertices except by itself. So the degree of a

vertex will be up to the number of vertices in the graph minus 1. This 1 is for the self-

vertex as it cannot form a loop by itself. If there is a loop at any of the vertices, then it is not

a Simple Graph.

Degree of vertex can be considered under two cases of graphs −

• Undirected Graph

• Directed Graph

Degree of Vertex in an Undirected Graph

An undirected graph has no directed edges. Consider the following examples.

Eg

Take a look at the following graph −

In the above Undirected Graph,

• deg(a) = 2, as there are 2 edges meeting at vertex ‘a’.

• deg(b) = 3, as there are 3 edges meeting at vertex ‘b’.

• deg(c) = 1, as there is 1 edge formed at vertex ‘c’

• So ‘c’ is a pendent vertex.

• deg(d) = 2, as there are 2 edges meeting at vertex ‘d’.

• deg(e) = 0, as there are 0 edges formed at vertex ‘e’.

• So ‘e’ is an isolated vertex.

Degree of Vertex in a Directed Graph

In a directed graph, each vertex has an indegree and an outdegree.

Indegree of a Graph

• Indegree of vertex V is the number of edges which are coming into the vertex V.

• Notation − deg−(V).

Outdegree of a Graph

• Outdegree of vertex V is the number of edges which are going out from the vertex

V.

• Notation − deg+(V).

Consider the following examples.

Eg

Take a look at the following directed graph. Vertex ‘a’ has two edges, ‘ad’ and

‘ab’, which are going outwards. Hence its outdegree is 2. Similarly, there is an edge

‘ga’, coming towards vertex ‘a’. Hence the indegree of ‘a’ is 1.

The indegree and outdegree of other vertices are shown in the following table −

Vertex Indegree Outdegree

a 1 2

b 2 0

c 2 1

d 1 1

e 1 1

f 1 1

g 0 2

Null Graph

A graph having no edges is called a Null Graph.

Eg

In the above graph, there are three vertices named ‘a’, ‘b’, and ‘c’, but there are no

edges among them. Hence it is a Null Graph.

Trivial Graph

A graph with only one vertex is called a Trivial Graph.

Eg

In the above shown graph, there is only one vertex ‘a’ with no other edges. Hence it is a

Trivial graph.

Connected Graph

A graph G is said to be connected if there exists a path between every pair of

vertices. There should be at least one edge for every vertex in the graph. So that we can say

that it is connected to some other vertex at the other side of the edge.

Eg

In the following graph, each vertex has its own edge connected to other edge.

Hence it is a connected graph.

Disconnected Graph

A graph G is disconnected, if it does not contain at least two connected vertices.

Eg

The following graph is an example of a Disconnected Graph, where there are two

components, one with ‘a’, ‘b’, ‘c’, ‘d’ vertices and another with ‘e’, ’f’, ‘g’, ‘h’ vertices.

The two components are independent and not connected to each other. Hence it is

called disconnected graph.

Regular Graph

A graph G is said to be regular, if all its vertices have the same degree. In a graph,

if the degree of each vertex is ‘k’, then the graph is called a ‘k-regular graph’.

Eg

In the following graphs, all the vertices have the same degree. So these graphs

are called regular graphs.

In both the graphs, all the vertices have degree 2. They are called 2-Regular Graphs.

Complete Graph

A simple graph with ‘n’ mutual vertices is called a complete graph and it is denoted

by ‘Kn’. In the graph, a vertex should have edges with all other vertices, then it called a

complete graph.

In other words, if a vertex is connected to all other vertices in a graph, then it is called a

complete graph.

Eg

In the following graphs, each vertex in the graph is connected with all the

remaining vertices in the graph except by itself.

Bipartite Graph

A simple graph G = (V, E) with vertex partition V = {V1, V2} is called a bipartite

graph if every edge of E joins a vertex in V1 to a vertex in V2.

In general, a Bipartite graph has two sets of vertices, let us say, V1 and V2, and if an

edge is drawn, it should connect any vertex in set V1 to any vertex in set V2.

Eg

In this graph, you can observe two sets of vertices − V1 and V2. Here, two edges named ‘ae’

and ‘bd’ are connecting the vertices of two sets V1 and V2.

Complete Bipartite Graph

A bipartite graph ‘G’, G = (V, E) with partition V = {V1, V2} is said to be a complete

bipartite graph if every vertex in V1 is connected to every vertex of V2.

In general, a complete bipartite graph connects each vertex from set V1 to each vertex from

set V2.

Eg

The following graph is a complete bipartite graph because it has edges

connecting each vertex from set V1 to each vertex from set V2.

If |V1| = m and |V2| = n, then the complete bipartite graph is denoted by Km, n.

• Km,n has (m+n) vertices and (mn) edges.

• Km,n is a regular graph if m=n.

In general, a complete bipartite graph is not a complete graph.

Isomorphic Graphs

Two graphs G1 and G2 are said to be isomorphic if −

• Their number of components (vertices and edges) are same.

• Their edge connectivity is retained.

Note

If G1 ≡ G2 then −

|V(G1)| = |V(G2)|

|E(G1)| = |E(G2)|

Degree sequences of G1 and G2 are same.

If the vertices {V1, V2, .. Vk} form a cycle of length K in G1, then the vertices {f(V1),

f(V2),… f(Vk)} should form a cycle of length K in G2.

All the above conditions are necessary for the graphs G1 and G2 to be isomorphic, but not

sufficient to prove that the graphs are isomorphic.

• (G1 ≡ G2) if and only if (G1− ≡ G2−) where G1 and G2 are simple graphs.

• (G1 ≡ G2) if the adjacency matrices of G1 and G2 are same.

• (G1 ≡ G2) if and only if the corresponding subgraphs of G1 and G2 (obtained by

deleting some vertices in G1 and their images in graph G2) are isomorphic.

Eg

Which of the following graphs are isomorphic?

In the graph G3, vertex ‘w’ has only degree 3, whereas all the other graph vertices has

degree 2. Hence G3 not isomorphic to G1 or G2.

Matrix Representation of Graphs

A graph can be represented using Adjacency Matrix way.

Adjacency Matrix

An Adjacency Matrix A[V][V] is a 2D array of size V × V where V is the number

of vertices in a undirected graph. If there is an edge between Vx to Vy then the value of

A[Vx][Vy]=1 and A[Vy][Vx]=1, otherwise the value will be zero.

For a directed graph, if there is an edge between Vx to Vy, then the value of A[Vx][Vy]=1,

otherwise the value will be zero.

Adjacency Matrix of an Undirected Graph

Let us consider the following undirected graph and construct the adjacency matrix –

Eg

Adjacency matrix of the above undirected graph will be −

a B C D

a 0 1 1 0

b 1 0 1 0

c 1 1 0 1

d 0 0 1 0

Adjacency Matrix of a Directed Graph

Let us consider the following directed graph and construct its adjacency matrix –

Eg

Adjacency matrix of the above directed graph will be −

a b C D

A 0 1 1 0

B 0 0 1 0

C 0 0 0 1

D 0 0 0 0

Warshall Algorithm

The all pair shortest path algorithm is also known as Floyd-Warshall algorithm is used

to find all pair shortest path problem from a given weighted graph. As a result of this

algorithm, it will generate a matrix, which will represent the minimum distance from any

node to all other nodes in the graph.

Eg

At first the output matrix is same as given cost matrix of the graph. After that the output

matrix will be updated with all vertices k as the intermediate vertex.

The time complexity of this algorithm is O(V3), here V is the number of vertices in the

graph.

Algorithm

Begin

 for k := 0 to n, do

 for i := 0 to n, do

 for j := 0 to n, do

 if cost[i,k] + cost[k,j] < cost[i,j], then

 cost[i,j] := cost[i,k] + cost[k,j]

 done

 done

 done

 display the current cost matrix

End

Tree

A connected acyclic graph is called a tree. In other words, a connected graph with

no cycles is called a tree.

The edges of a tree are known as branches. Elements of trees are called their nodes.

The nodes without child nodes are called leaf nodes.

A tree with ‘n’ vertices has ‘n-1’ edges. If it has one more edge extra than ‘n-1’, then

the extra edge should obviously has to pair up with two vertices which leads to form a cycle.

Then, it becomes a cyclic graph which is a violation for the tree graph.

Eg

The graph shown here is a tree because it has no cycles and it is connected. It has four

vertices and three edges, i.e., for ‘n’ vertices ‘n-1’ edges as mentioned in the definition.

Note − Every tree has at least two vertices of degree one.

Center of a Tree

The center of a tree is a vertex with minimal eccentricity. The eccentricity of a vertex

‘X’ in a tree ‘G’ is the maximum distance between the vertex ‘X’ and any other vertex of the

tree. The maximum eccentricity is the tree diameter. If a tree has only one center, it is called

Central Tree and if a tree has only more than one centers, it is called Bi-central Tree. Every

tree is either central or bi-central.

Stps to find centers of a tree

Step 1 − Remove all the vertices of degree 1 from the given tree and also remove their

incident edges.

Step 2 − Repeat step 1 until either a single vertex or two vertices joined by an edge is left. If

a single vertex is left then it is the center of the tree and if two vertices joined by an edge is

left then it is the bi-center of the tree.

Eg

Find out the center/bi-center of the following tree −

Solution

At first, we will remove all vertices of degree 1 and also remove their incident edges and get

the following tree −

Again, we will remove all vertices of degree 1 and also remove their incident edges and get

the following tree −

Finally we got a single vertex ‘c’ and we stop the algorithm. As there is single vertex, this

tree has one center ‘c’ and the tree is a central tree.

Spanning Trees

Let G be a connected graph, then the sub-graph H of G is called a spanning tree of G if −

• H is a tree

• H contains all vertices of G.

A spanning tree T of an undirected graph G is a subgraph that includes all of the vertices of

G.

Eg

In the above example, G is a connected graph and H is a sub-graph of G.

Clearly, the graph H has no cycles, it is a tree with six edges which is one less than the total

number of vertices. Hence H is the Spanning tree of G.

Minimum Spanning Tree

A spanning tree with assigned weight less than or equal to the weight of every

possible spanning tree of a weighted, connected and undirected graph G, it is called

minimum spanning tree (MST). The weight of a spanning tree is the sum of all the weights

assigned to each edge of the spanning tree.

Eg

Kruskal's Algorithm

Kruskal's algorithm is a greedy algorithm that finds a minimum spanning tree for a

connected weighted graph. It finds a tree of that graph which includes every vertex and the

total weight of all the edges in the tree is less than or equal to every possible spanning tree.

Algorithm

Step 1 − Arrange all the edges of the given graph $G (V,E)$ in ascending order as per their

edge weight.

Step 2 − Choose the smallest weighted edge from the graph and check if it forms a cycle

with the spanning tree formed so far.

Step 3 − If there is no cycle, include this edge to the spanning tree else discard it.

Step 4 − Repeat Step 2 and Step 3 until $(V-1)$ number of edges are left in the spanning

tree.

Eg

Suppose we want to find minimum spanning tree for the following graph G using

Kruskal’s algorithm.

Solution

From the above graph we construct the following table −

Edge

No.

Vertex

Pair

Edge

Weight

E1 (a, b) 20

E2 (a, c) 9

E3 (a, d) 13

E4 (b, c) 1

E5 (b, e) 4

E6 (b, f) 5

E7 (c, d) 2

E8 (d, e) 3

E9 (d, f) 14

Now we will rearrange the table in ascending order with respect to Edge weight −

Edge

No.

Vertex

Pair

Edge

Weight

E4 (b, c) 1

E7 (c, d) 2

E8 (d, e) 3

E5 (b, e) 4

E6 (b, f) 5

E2 (a, c) 9

E3 (a, d) 13

E9 (d, f) 14

E1 (a, b) 20

Since we got all the 5 edges in the last figure, we stop the algorithm and this is the minimal

spanning tree and its total weight is $(1 + 2 + 3 + 5 + 9) = 20$.

Prim's Algorithm

Prim's algorithm, discovered in 1930 by mathematicians, Vojtech Jarnik and Robert

C. Prim, is a greedy algorithm that finds a minimum spanning tree for a connected weighted

graph. It finds a tree of that graph which includes every vertex and the total weight of all the

edges in the tree is less than or equal to every possible spanning tree. Prim’s algorithm is

faster on dense graphs.

Algorithm

• Initialize the minimal spanning tree with a single vertex, randomly chosen from the

graph.

• Repeat steps 3 and 4 until all the vertices are included in the tree.

• Select an edge that connects the tree with a vertex not yet in the tree, so that the

weight of the edge is minimal and inclusion of the edge does not form a cycle.

• Add the selected edge and the vertex that it connects to the tree.

Eg

Suppose we want to find minimum spanning tree for the following graph G using

Prim’s algorithm.

Solution

Here we start with the vertex ‘a’ and proceed.

This is the minimal spanning tree and its total weight is $(1 + 2 + 3 + 5 + 9) = 20$.

Shortest Path Problem

Dijkstra’s Algorithm

Dijkstra’s algorithm solves the single-source shortest-paths problem on a directed

weighted graph G = (V, E), where all the edges are non-negative (i.e., w(u, v) ≥ 0 for each

edge (u, v) Є E).

In the following algorithm, we will use one function Extract-Min(), which extracts the node

with the smallest key.

Eg

Let us consider vertex 1 and 9 as the start and destination vertex respectively.

Initially, all the vertices except the start vertex are marked by ∞ and the start vertex is

marked by 0.

Vertex Initial
Step1

V1

Step2

V3

Step3

V2

Step4

V4

Step5

V5

Step6

V7

Step7

V8

Step8

V6

1 0 0 0 0 0 0 0 0 0

2 ∞ 5 4 4 4 4 4 4 4

3 ∞ 2 2 2 2 2 2 2 2

4 ∞ ∞ ∞ 7 7 7 7 7 7

5 ∞ ∞ ∞ 11 9 9 9 9 9

6 ∞ ∞ ∞ ∞ ∞ 17 17 16 16

7 ∞ ∞ 11 11 11 11 11 11 11

8 ∞ ∞ ∞ ∞ ∞ 16 13 13 13

9 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 20

Hence, the minimum distance of vertex 9 from vertex 1 is 20. And the path is

1→ 3→ 7→ 8→ 6→ 9

This path is determined based on predecessor information.

Rooted Tree

A rooted tree G is a connected acyclic graph with a special node that is called the

root of the tree and every edge directly or indirectly originates from the root. An ordered

rooted tree is a rooted tree where the children of each internal vertex are ordered. If every

internal vertex of a rooted tree has not more than m children, it is called an m-ary tree. If

every internal vertex of a rooted tree has exactly m children, it is called a full m-ary tree. If

$m = 2$, the rooted tree is called a binary tree.

Eg

Binary Search Tree

Binary Search tree is a binary tree which satisfies the following property −

• ‘X’ in left sub-tree of vertex V, Value(X) \le Value (V)

• ‘Y’ in right sub-tree of vertex V, Value(Y) \ge Value (V)

So, the value of all the vertices of the left sub-tree of an internal node ‘V’ are less than or

equal to ‘V’ and the value of all the vertices of the right sub-tree of the internal node ‘V’ are

greater than or equal to ‘V’. The number of links from the root node to the deepest node is

the height of the Binary Search Tree.

Eg

Traversing a Binary Tree

Traversal is a process to visit all the nodes of a tree and may print their values too.

Because, all nodes are connected via edges (links) we always start from the root (head)

node. That is, we cannot randomly access a node in a tree. There are three ways which we

use to traverse a tree −

• In-order Traversal

• Pre-order Traversal

• Post-order Traversal

Generally, we traverse a tree to search or locate a given item or key in the tree or to print all

the values it contains.

In-order Traversal

In this traversal method, the left subtree is visited first, then the root and later the right sub-

tree. We should always remember that every node may represent a subtree itself.

If a binary tree is traversed in-order, the output will produce sorted key values in an

ascending order.

We start from A, and following in-order traversal, we move to its left subtree B. B is also

traversed in-order. The process goes on until all the nodes are visited. The output of inorder

traversal of this tree will be −

D → B → E → A → F → C → G

Algorithm

Until all nodes are traversed −

Step 1 − Recursively traverse left subtree.

Step 2 − Visit root node.

Step 3 − Recursively traverse right subtree.

Pre-order Traversal

In this traversal method, the root node is visited first, then the left subtree and finally

the right subtree.

We start from A, and following pre-order traversal, we first visit A itself and then move to

its left subtree B. B is also traversed pre-order. The process goes on until all the nodes are

visited. The output of pre-order traversal of this tree will be −

A → B → D → E → C → F → G

Algorithm

Until all nodes are traversed −

Step 1 − Visit root node.

Step 2 − Recursively traverse left subtree.

Step 3 − Recursively traverse right subtree.

Post-order Traversal

In this traversal method, the root node is visited last, hence the name. First we traverse the

left subtree, then the right subtree and finally the root node.

We start from A, and following Post-order traversal, we first visit the left subtree B. B is

also traversed post-order. The process goes on until all the nodes are visited. The output of

post-order traversal of this tree will be −

D → E → B → F → G → C → A

Algorithm

Until all nodes are traversed −

Step 1 − Recursively traverse left subtree.

Step 2 − Recursively traverse right subtree.

Step 3 − Visit root node.

REVIEW QUESTIONS

1) Define Binary Tree.

2) Define indegree and outdegree.

3) Explain the representation of trees.

4) Explain in detail about matrix representation of graphs with example.

5) Define spanning tree.

6) Define Rooted tree.

7) Explain traversal of binary tree.

8) What is meant by complete asymmetric graph.

UNIT – IV

LINEAR PROGRAMMING PROBLEM(LPP)

➢ Mathematical Formulation

➢ Graphical Solution

➢ Slack and Surplus Variable

➢ Simplex Method

➢ Two Phase Method

--

LINEAR PROGRAMMING PROBLEM(LPP)

Decision Variables and their Relationships

 The decision variable refers to any candidate (person, service, projects, jobs, tasks)

competing with other decision variables for limited resources. These variables are usually

interrelated in terms of utilization of resources and need simultaneous solutions, i.e., the

relationship among these variables should be linear.

Objective Function

 The Linear Programming Problem must have a well defined objective function to

optimize the results. For instance, minimization of cost or maximization of profits. It should

be expressed as linear function of decision variables (Z = X1 + X2, where Z represents the

objective, i.e., minimization/maximization, X1 and X2 are the decision variables directly

affecting the Z value).

Constraints

 There would be limitations on resources which are to be allocated among various

competing activities. These must be capable of being expressed as linear equalities or

inequalities in terms of decision variables.

Non-Negativity Restrictions

 All variables must assume non-negative values. If any of the variable is unrestricted

in sign, a tool can be employed which will enforce the negativity without changing the

original information of a problem.

Mathematical Formulation of Linear Programming Problems(LPP)

 Steps for formulating LPP,

1. Identify the nature of the problem (maximization/minimization problem).

2. Identify the number of variables to establish the objective function.

3. Formulate the constraints.

4. Develop non-negativity constraints.

Eg

 A firm manufactures 2 types of products A & B and sells them at a profit or ` 2 on

type A & ` 3 on type B. Each product is processed on 2 machines G & H. Type a requires1

minute of processing time on G and 2 minutes on H. Type B requires one minute on G &1

minute on H. The machine G is available for not more than 6 hrs. 40 mins. while machine H

is available for 10 hrs. during any working day. Formulate the problem as LPP.

Solution

 Let, x1 be the no. of products of type A.

 x2 be the no. of products of type B.

Since the profit on type A is ` 2 per product, 2x1 will be the profit on selling x1 units

of type A. Similarly 3x2 will be the profit on selling x2 units of type B.

Hence the objective function will be,Maximize ‘Z’ = 2x1 + 3x2 is subject to

constraints.

Since machine ‘G’ takes one minute on ‘A’ and one minute on ‘B’, the total number

of minutes required is given by x1 + x2. Similarly, on machine ‘H’ 2x1 + x2. But ‘G’ is not

available for more than 400 minutes. Therefore, x1 + x2 400 and H is not available for more

than 600 minutes, therefore, 2x1 + x2  600 and x1, x2,  0, i.e.,

x1 + x2400 (Time availability constraints)

2x1 + x2600

x1, x20 (Non-negativity constraints)

Graphical Solutions under Linear Programming

Steps

1. Consider each inequality constraint as an equation.

2. Plot each equation on the graph as each will geometrically represent a straight line.

3. Plot the feasible region, every point on the line will satisfy the equation on the line.

4. If the inequality constraint corresponding to that line is less than or equal to, then

the region below the line lying in the 1st quadrant (as shown in above graph) is shaded (due

to non-negativity of variables); for the inequality constraint with greater than or equal to sign,

the region above the line in the 1st quadrant is shaded. The points lying in common region

will satisfy all the constraints simultaneously. Hence, it is called feasible region.

5. Identify the co-ordinates of the corner points.

6. Find the ‘Z’ value by substituting the co-ordinates of corner points to the objective

functions.

Eg

 Maximize ‘Z’ =3x1 + 5x2

(Subject to constraints)

x1 + 2x2  2,000

x1 + x2  1,500

x2  600

x1, x20

Solution

 Step 1: Convert the inequalities into equalities and find the divisible of the equalities.

Step 2: Fix up the graphic scale.

Maximum points =2,000

Minimum points =600

2 cms =500 points

Step 3: Graph the data

Step 4: Find the co-ordinates of the corner points

At ‘B’: x1 + 2x2 =2,000 (1)

 x1 + x2 =1,500 (2)

 x2 =500

Notes Put x2 = 500 in eq. (1),

 x1 + 2(500) = 2,000

Therefore x1 = 2,000 – 1,000

Therefore x1 = 1,000

At ‘C’: x1 + 2x2 = 2,000 ………(1)

 x2 = 600 ………(2)

 Put x2 = 600 in eq. (1),

 x1 + 2(600) = 2,000

 x1 = 2,000 – 1,200

Therefore x1 = 800

Step 5: Substitute the co-ordinates of corner points into the objective

function. Maximize ‘Z’ = 3x1 + 5x2

At ‘O’, Z = 0 + 0 = 0

At ‘A’, Z = 3 (1,500) + 5 (0) = 4,500

At ‘B’, Z = 3 (1,000) + 5 (500) = 5,500

At ‘C’, Z = 3 (800) + 5 (600) = 5,400

At ‘C’, Z = 3 (0) + 5 (600) = 3,000

Result

A maximum profit of ` 5,500 can be earned by producing 1,000 dolls of basic version

and 500 dolls of deluxe version.

Slack and Surplus Variables

To convert an equation of the form

ai1x1 + ai2x2 + ··· + a1nxn ≤ bi to standard form

we introduce a slack variable yi to obtain

 ai1x1 + ai2x2+···+a1nxn+ yi = bi.

To convert an equation of the form

ai1x1 + ai2x2 + ··· + a1nxn ≥ bi to standard form

we introduce a surplus variable yi to obtain

 ai1x1 + ai2x2+···+a1nxn- yi = bi.

Eg

 Maximise ‘Z’ = 4x1 + 3x2
[Subject to constraints]

2x1 + x2 ≤ 30

x1 + x2 ≥ 24

Where, x1, x2  0 [Non-negativity constraints]

Standard Form
 Convert the inequalities into equalities adding slack and surplus variables.

 Maximise ‘Z’ = 4x1 + 3x2
[Subject to constraints]

2x1 + x2 + x3 = 30

x1 + x2 – x4 = 24

Where, x1, x2, x3, x4  0 [Non-negativity
constraints]

Simplex Method of Linear Programming

Steps:

i) Convert the inequalities into equalities by adding slack variables, surplus

variables or artificial variables, as the case may be.

ii) Identify the coefficient of equalities and put them into a matrix form AX = B

Where "A" represents a matrix of coefficient, "X" represents a vector of unknown

quantities and B represents a vector of constants, leads to AX = B [This is

according to system of equations].

iii) Tabulate the data into the first iteration of Simplex Method.

(a) Cj is the coefficient of unknown quantities in the objective function.

Zj = CBiYij (Multiples and additions of coefficients in the table, i.e., CB1 × Y11 + CB2
×

Y12)

(b) Identify the Key or Pivotal column with the minimum element of Zj - Cj

denoted as 'KC' throughout to the problems in the chapter.

(c) Find the 'Minimum Ratio' i.e., XBi/Yij.

(d) Identify the key row with the minimum element in a minimum ratio column.

Key row is denoted as 'KP'.

(e) Identify the key element at the intersecting point of key column and key row,

which is put into a box throughout to the problems in the chapter.

iv) Reinstate the entries to the next iteration of the simplex method.

a) The pivotal or key row is to be adjusted by making the key element as '1'

and dividing the other elements in the row by the same number.

b) The key column must be adjusted such that the other elements other than

key elements should be made zero.

c) The same multiple should be used to other elements in the row to adjust the rest of the

elements. But, the adjusted key row elements should be used for deducting out of the earlier

iteration row

d) The same iteration is continued until the values of Zj – Cj become either '0' or positive.

v) Find the 'Z' value given by CB, XB.

Eg

Solve by Simplex method.

Two Phase Method

Eg

REVIEW QUESTIONS

1) Define slack and surplus variable.

2) What is optimum basic feasible solution.

3) Write the algorithm for graphical method.

4) Write mathematical formulation of LPP.

5) Write algorithm for Simplex method.

6) Define non negativity constraints.

UNIT – V

TRANSPORTATION PROBLEM(TP)

➢ Transportation Table

➢ Solution of Transportation Problem

➢ Testing for Optimality

➢ Assignment Problem

➢ The Assignment Method

➢ Special Cases in Assignment Problems

--

TRANSPORTATION PROBLEM(TP)

Transportation problem is a particular class of linear programming, which is associated with

day-to-day activities in our real life and mainly deals with logistics. It helps in solving problems on

distribution and transportation of resources from one place to another. The goods are transported from

a set of sources (e.g., factory) to a set of destinations (e.g., warehouse) to meet the specific

requirements. In other words, transportation problems deal with the transportation of a product

manufactured at different plants (supply origins) to a number of different warehouses (demand

destinations). The objective is to satisfy the demand at destinations from the supply constraints at the

minimum transportation cost possible. To achieve this objective, we must know the quantity of

available supplies and the quantities demanded.

Mathematical Formulation of TP

Transportation Table

One.

Initial Basic Feasible Solution

Northwest Corner Method(NWC)

Eg

 Find Initial Basic Feasible Solution to the following TP by NWC method.

Row and Column Minima Method (RCMM)

Eg

 Find Initial Basic Feasible Solution to the following TP by RCMM method.

Vogel’s Approximation Method (VAM)

Eg

 Find Initial Basic Feasible Solution to the following TP by VAM method.

Test for Optimality

 Stepping Stone Method

Eg

 Consider the Following TP. Find the Optimum solution.

Assignment Problem

Types of Assignment Problem

Mathematical Formulation of AP

Eg

Special Case in Assignment Problems

 Maximization Case in Assignment Problem

REVIEW QUESTIONS

1) Define assignment problem.

2) Define IBFS.

3) Write algorithm for VAM method.

4) Write the mathematical formulation of TP.

5) What is meant by unbalanced TP.

6) Write the steps for assignment problem.

	UNIT-I.pdf
	UNIT-II.pdf
	UNIT-III.pdf
	UNIT-IV.pdf
	UNIT-V.pdf

