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LOGIC 

TF Statement 

 A proposition is a collection of declarative statements that has either a truth value 

"true” or a truth value "false". A propositional consists of propositional variables and 

connectives. We denote the propositional variables by capital letters (A, B, etc). The 

connectives connect the propositional variables. 

Eg 

• "Man is Mortal", it returns truth value “TRUE” 

• "12 + 9 = 3 – 2", it returns truth value “FALSE” 

The following is not a Proposition − 

• "A is less than 2". It is because unless we give a specific value of A, we cannot say 

whether the statement is true or false. 

Connectives 

A Logical Connective is a symbol which is used to connect two or more propositional 

or predicate logics in such a manner that resultant logic depends only on the input logics and 

the meaning of the connective used. 

Generally there are five connectives which are , 

• OR (∨) 

• AND (∧) 

• Negation/ NOT (¬) 

• Implication / if-then (→) 

• If and only if (⇔). 

 

 



OR (∨)  

 The OR operation of two propositions A and B (written as A ∨ B) is true if at least 

any of the propositional variable A or B is true. 

The truth table is as follows − 

A B A ∨ B 

True True True 

True False True 

False True True 

False False False 

 

AND (∧)  

 The AND operation of two propositions A and B (written as $A \land B$) is true if 

both the propositional variable A and B is true. 

The truth table is as follows − 

A B A ∧ B 

True True True 

True False False 

False True False 

False False False 

Negation (¬)  

The negation of a proposition A (written as ¬ A) is false when A is true and is true 

when A is false. 

The truth table is as follows − 

A ¬ A 



A ¬ A 

True False 

False True 

Implication / if-then (→)  

 An implication A → B is the proposition “if A, then B”. It is false if A is true and B 

is false. The rest cases are true. 

The truth table is as follows − 

A B A → B 

True True True 

True False False 

False True True 

False False True 

If and only if (⇔)  

A ⇔ B is bi-conditional logical connective which is true when p and q are same, i.e. 

both are false or both are true. 

The truth table is as follows − 

A B A ⇔ B 

True True True 

True False False 

False True False 

False False True 

 

 



Atomic and Compound Statements 

An atomic sentence is an atomic formula containing no variables. It follows that an 

atomic sentence contains no logical connectives, variables or quantifiers. A sentence 

consisting of one or more sentences and a logical connective is a compound (or molecular) 

sentence. 

Eg 

It is raining     - simple statement 

Jack and jill went up the hill    - compound statement 

Well-formed Formula (wff) 

Not all strings can represent propositions of predicate logic. Those that produce a 

proposition when their symbols are interpreted are called well-formed formulas of the first 

order predicate logic. A predicate name followed by a list of variables such as P(x, y), 

where P is a predicate name, and x and y are variables, is called an atomic formula.             

 

Wffs are constructed using the following rules: 

1. True and False are wffs. 

2. Each propositional constant (i.e. specific proposition). 

3. Each atomic formula (i.e. a specific predicate with variables) is a wff. 

4. If A and B are wffs, then so are ¬A, (A ˅ B), (A˄ B), (A → B), and (A ↔ B). 
 

Parsing Tree 

  

 Every wff we can associate a tree called a parsing tree. 

Eg 

 

The Truth Table of a Formula 

A truth table shows how the truth or falsity of a compound statement depends on the 

truth or falsity of the simple statements from which it's constructed. 

 



Eg 

 Construct a truth table for the formula  . 

 

 

 

Tautology 

A tautology is a formula which is "always true" --- that is, it is true for every 

assignment of truth values to its simple components. You can think of a tautology as a rule of 

logic. 

The opposite of a tautology is a contradiction, a formula which is "always false". In 

other words, a contradiction is false for every assignment of truth values to its simple 

components. 

Eg  

Show that  is a tautology. 

I construct the truth table for  and show that the formula is always true. 

 

The last column contains only T's. Therefore, the formula is a tautology. 

Tautological Implications and Equivalence of Formulae  

Tautologies by adding ones involving the conditional and the biconditional. From 

now on, we use small letters like p and q to denote atomic statements only, and uppercase 

letters like A and B to denote statements of all types, compound or atomic. 



We first look at some tautological implications, tautologies of the form A B. You should 

check the truth table of each of the statements we give to see that they are, indeed, 

tautologies. 

Eg 

p q p q (p q) p [(p q) p] q 

T T T T T 

T F F F T 

F T T F T 

F F T F T 

 

REVIEW QUESTIONS 

1) Define Well Formed formula. 

2) What is the truth table for conditional statement? 

3) Discuss about tautological implication. 

4) Explain about Connectives. 

5) Show that (P→Q)˄(R→Q)and (P˅R)→Q are equivalent. 

6) Prove whether the following formula (P˄(P↔Q))→Q) is a tautology or 

not. 

7) What is meant by atomic and compound statements. 

8) Define tautology. 
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------------------------------------------------------------------------------------------------------------ 

NORMAL FORMS 

Principal Normal Form 

Disjunctive Normal Forms (DNF)  

A formula which is equivalent to a given formula and which consists of a sum of 

elementary products is called a disjunctive normal form of given formula. 

Eg 

 

(P ∧ ~ Q) ∨ (Q ∧ R) ∨ (~ P ∧ Q ∧~ R) 

• The DNF of formula is not unique. 

Conjunctive Normal Form (CNF)  

A formula which is equivalent to a given formula and which consists of a product of 

elementary products is called a conjunctive normal form of given formula. 

Eg 

(P~ ∨ Q) ∧ (Q ∨ R) ∧ (~ P ∨ Q ∨ ~ R) 

• The CNF of formula is not unique. 

• If every elementary sum in CNF is tautology, then given formula is also 

tautology. 

Principle Disjunctive Normal Form (PDNF) 

An equivalent formula consisting of disjunctions of minterms only is called the 

principle disjunctive normal form of the formula. 

It is also known as sum-of-products canonical form. 

Eg 

(P ∧ ~ Q ∧ ~ R) ∨ (P ∧ ~ Q ∧ R) ∨ (~ P ∧ ~ Q ∧ ~ R) 

• The minterm consists of conjunctions in which each statement variable or its 

negation, but not both, appears only once. 

• The minterms are written down by including the variable if its truth value is T 

and its negation if its truth value is F. 

Principle Conjunctive Normal Form (PCNF)  



An equivalent formula consisting of conjunctions of maxterms only is called the 

principle conjunctive normal form of the formula. 

It is also known as product-of-sums canonical form. 

Eg 

(P ∨ ~ Q ∨ ~ R) ∧ (P ∨ ~ Q ∨ R) ∧ (~ P ∨ ~ Q ∨ ~ R) 

• The maxterm consists of disjunctions in which each variable or its negation, 

but not both, appears only once. 

• The dual of a minterm is called a maxterm. 

• Each of the maxterm has the truth value F for exactly one combination of the 

truth values of the variables. 

• The maxterms are written down by including the variable if its truth value is F 

and its negation if its truth value is T. 

Eg 

Obtain the PDNF of ( P   Q)→ (P ↔  Q) 

P Q  P  Q P  Q ( P  Q) → (P ↔  Q) 

T T F F T 

T F T T T 

F T T T T 

F F T F F 

From the above table 

 

( P  Q)→ (P ↔  Q)  (P Q)  (P  Q)  ( P Q) 

 ( P Q)  (P  Q)  (P Q) 

 

 

 

Eg 

Obtain PDNF for P→ ((P→ Q   ( Q   P))). 

 

Solution 

 

P→ ((P→ Q   ( Q   P)))  P→ ((P→ Q  (P  Q))) 

 P→ ((P→ P  Q)) 

 P→ ( P  (P  Q)) 

  P  ( P  (P  Q)) 

  P  (P  Q) 

 ( P  (Q   Q))  (P  Q) 

 ( P  Q)  ( P   Q)  (P  Q) 

 ( P   Q)  ( P  Q)  (P  Q) 

 

 

 



Eg 

 

Obtain PCNF for A : ( P→ R)  ((Q→ P)  (P→ Q)). 
 
Solution 
 

A  (P R) (( Q P) ( P Q)) 

 (P R (Q  Q))  (P  Q (R  R))  ( P Q (R  R)) 

 (P Q R) (P  Q R) (P  Q R) (P  Q  R) ( P Q R) ( P Q  R) 

 (P Q R)  (P  Q R)  (P  Q  R)  ( P Q R)  ( P Q  R) 
 

Theory of Inference 

A proof is an argument from hypotheses (assumptions) to a conclusion. Each step of 

the argument follows the laws of logic. In mathematics, a statement is not accepted as valid 

or correct unless it is accompanied by a proof. This insistence on proof is one of the things 

that sets mathematics apart from other subjects. 

Writing proofs is difficult; there are no procedures which you can follow which will 

guarantee success. The patterns which proofs follow are complicated, and there are a lot of 

them. You can't expect to do proofs by following rules, memorizing formulas, or looking at a 

few examples in a book. 

For this reason, I'll start by discussing logic proofs. Since they are more highly patterned than 

most proofs, they are a good place to start. They'll be written in column format, with each 

step justified by a rule of inference. Most of the rules of inference will come from 

tautologies. Since a tautology is a statement which is "always true", it makes sense to use 

them in drawing conclusions. 

Like most proofs, logic proofs usually begin with premises --- statements that you're allowed 

to assume. The conclusion is the statement that you need to prove. The idea is to operate on 

the premises using rules of inference until you arrive at the conclusion. 

Rule of Premises. You may write down a premise at any point in a proof. 

The second rule of inference is one that you'll use in most logic proofs. It is sometimes 

called modus ponendo ponens, but I'll use a shorter name. 

Modus Ponens. If you know P and  , you may write down Q. 

In the rules of inference, it's understood that symbols like "P" and "Q" may be replaced 

by any statements, including compound statements. I'll say more about this later. 

Here is a simple proof using modus ponens: 

 



I'll write logic proofs in 3 columns. The statements in logic proofs are numbered so that you 

can refer to them, and the numbers go in the first column. The actual statements go in the 

second column. The third column contains your justification for writing down the statement. 

Thus, statements 1 (P) and 2 (  ) are premises, so the rule of premises allows me to 

write them down. Modus ponens says that if I've already written down P and  --- 

on any earlier lines, in either order --- then I may write down Q. I did that in line 3, citing the 

rule ("Modus ponens") and the lines (1 and 2) which contained the statements I needed to 

apply modus ponens. 

As I noted, the "P" and "Q" in the modus ponens rule can actually stand for compound 

statements --- they don't have to be "single letters". For example: 

 

There are several things to notice here. First,  is taking the place of P in the modus 

ponens rule, and  is taking the place of Q. That is,  and  are compound 

statements which are substituted for "P" and "Q" in modus ponens. 

Notice also that the if-then statement  is listed first and the "if"-part  is 

listed second. It doesn't matter which one has been written down first, and long as both pieces 

have already been written down, you may apply modus ponens. 

Finally, the statement  didn't take part in the modus ponens step. Perhaps this is part of a 

bigger proof, and  will be used later. The fact that it came between the two modus ponens 

pieces doesn't make a difference. 

As usual in math, you have to be sure to apply rules exactly. For example, this is not a valid 

use of modus ponens: 

 

Do you see why? To use modus ponens on the if-then statement  , you need the 

"if"-part, which is  . You only have P, which is just part of the "if"-part. That's not 

good enough. 

Double Negation. In any statement, you may substitute P for  or  for P (and write 

down the new statement). 

For example, in this case I'm applying double negation with P replaced by  : 

 



You can also apply double negation "inside" another statement: 

 

Double negation comes up often enough that, we'll bend the rules and allow it to be used 

without doing so as a separate step or mentioning it explicitly. I'll demonstrate this in the 

examples for some of the other rules of inference. 

Modus Tollens. If you know  and  , you may write down  . 

This is a simple example of modus tollens: 

 

In the next example, I'm applying modus tollens with P replaced by C and Q replaced 

by  : 

 

The last example shows how you're allowed to "suppress" double negation steps. Do you see 

how this was done? If I wrote the double negation step explicitly, it would look like this: 

 

When you apply modus tollens to an if-then statement, be sure that you have the negation of 

the "then"-part. The following derivation is incorrect: 

 

To use modus tollens, you need  , not Q. 

This is also incorrect: 

 

This looks like modus ponens, but backwards. There is no rule that allows you to do this: The 

deduction is invalid. 



Disjunctive Syllogism. If you know  and  , you may write down Q. 

Here's a simple example of disjunctive syllogism: 

 

In the next example, I'm applying disjunctive syllogism with  replacing P and D 

replacing Q in the rule: 

 

In the next example, notice that P is the same as  , so it's the negation of  . 

 

This is another case where I'm skipping a double negation step. Without skipping the step, the 

proof would look like this: 

 

DeMorgan's Law. In any statement, you may substitute: 

1.  for  . 

2.  for  . 

3.  for  . 

4.  for  . 

As usual, after you've substituted, you write down the new statement. 

DeMorgan's Law tells you how to distribute  across  or  , or how to factor  out 

of  or  . To distribute, you attach  to each term, then change  to  or  to  . To 

factor, you factor  out of each term, then change  to  or  to  . 

Note that it only applies (directly) to "or" and "and". We'll see how to negate an "if-then" 

later. 

Here's DeMorgan applied to an "or" statement: 



 

Notice that a literal application of DeMorgan would have given  . I changed this 

to  , once again suppressing the double negation step. 

Conditional Disjunction. If you know  , you may write down  . 

If you know  , you may write down  . 

Here's the first direction: 

 

And here's the second: 

 

The first direction is key: Conditional disjunction allows you to convert "if-then" statements 

into "or" statements. 

We'll see below that biconditional statements can be converted into pairs of conditional 

statements. Together with conditional disjunction, this allows us in principle to reduce the 

five logical connectives to three (negation, conjunction, disjunction). But DeMorgan allows 

us to change conjunctions to disjunctions (or vice versa), so in principle we could do 

everything with just "or" and "not". The reason we don't is that it would make our statements 

much longer: The use of the other connectives is like shorthand that saves us writing. 

In additional, we can solve the problem of negating a conditional that we mentioned earlier. 

 

We've derived a new rule! Let's write it down. 

Negating a Conditional. If you know  , you may write down  . 

If you know  , you may write down  . 

The first direction is more useful than the second. Personally, I tend to forget this rule and 

just apply conditional disjunction and DeMorgan when I need to negate a conditional. But 

you may use this if you wish. 

Constructing a Conjunction. If you know P and Q, you may write down  . 



Think about this to ensure that it makes sense to you. If  is true, you're saying that P is 

true and that Q is true. So on the other hand, you need both P true and Q true in order to say 

that  is true. 

Here's an example. Notice that I put the pieces in parentheses to group them after 

constructing the conjunction. 

 

Rule of Syllogism. If you know  and  , then you may write down  . 

The Rule of Syllogism says that you can "chain" syllogisms together. For example: 

 

Definition of Biconditional. If you know  , you may write down  and you 

may write down  . If you know  and  , you may write down  . 

First, a simple example: 

 

By the way, a standard mistake is to apply modus ponens to a biconditional ("  "). Modus 

ponens applies to conditionals ("  "). So this isn't valid: 

 

With the same premises, here's what you need to do: 

 

Decomposing a Conjunction. If you know  , you may write down P and you may 

write down Q. 

This rule says that you can decompose a conjunction to get the individual pieces: 

 



Note that you can't decompose a disjunction! 

 

What's wrong with this? If you know that  is true, you know that one of P or Q must 

be true. The problem is that you don't know which one is true, so you can't assume that either 

one in particular is true. 

On the other hand, it is easy to construct disjunctions. 

Constructing a Disjunction. If you know P, and Q is any statement, you may write 

down  . 

This says that if you know a statement, you can "or" it with any other statement to construct a 

disjunction. 

 

Notice that it doesn't matter what the other statement is! Once you know that P is true, any 

"or" statement with P must be true: An "or" statement is true if at least one of the pieces is 

true. 

The next two rules are stated for completeness. They are easy enough that, as with double 

negation, we'll allow you to use them without a separate step or explicit mention. 

Commutativity of Conjunctions. In any statement, you may 

substitute  for  (and write down the new statement). 

Commutativity of Disjunctions. In any statement, you may 

substitute  for  (and write down the new statement). 

Here is commutativity for a conjunction: 

 

Here is commutativity for a disjunction: 

 

Before I give some examples of logic proofs, I'll explain where the rules of inference come 

from. You've probably noticed that the rules of inference correspond to tautologies. In fact, 

you can start with tautologies and use a small number of simple inference rules to derive all 

the other inference rules. 



Three of the simple rules were stated above: The Rule of Premises, Modus Ponens, and 

Constructing a Conjunction. Here are two others. We've been using them without mention in 

some of our examples if you look closely. 

Equivalence You may replace a statement by another that is logically equivalent. (Recall that 

P and Q are logically equivalent if and only if  is a tautology.) 

For instance, since P and  are logically equivalent, you can replace P 

with  or  with P. This is Double Negation. As I mentioned, we're saving time by 

not writing out this step. 

Substitution. You may take a known tautology and substitute for the simple statements. 

This amounts to my remark at the start: In the statement of a rule of inference, the simple 

statements ("P", "Q", and so on) may stand for compound statements. "May stand for" is the 

same as saying "may be substituted with". We've been doing this without explicit mention. 

Here's an example. The Disjunctive Syllogism tautology says 

 

Suppose you have  and  as premises. Here's how you'd apply the 

simple inference rules and the Disjunctive Syllogism tautology: 

 

Notice that I used four of the five simple inference rules: the Rule of Premises, Modus 

Ponens, Constructing a Conjunction, and Substitution. In line 4, I used the Disjunctive 

Syllogism tautology  by substituting 

 

(Some people use the word "instantiation" for this kind of substitution.) 

The advantage of this approach is that you have only five simple rules of inference. The 

disadvantage is that the proofs tend to be longer. With the approach I'll use, Disjunctive 

Syllogism is a rule of inference, and the proof is: 

 

Here are some proofs which use the rules of inference. In each case, some premises --- 

statements that are assumed to be true --- are given, as well as a statement to prove. A proof 

consists of using the rules of inference to produce the statement to prove from the premises. 



 

Example. Premises:  . 

Prove: C. 

 

 

Example. Premises:  . 

Prove:  . 

 

 

Example. Premises:  . 

Prove: B. 

 

 



 Open Statements  

An open statement in x associates with the name of each object in a collection, called 

the universe of the open statement, a logical statement. Such a logical statement is called 

a component of the open statement. It is obtained by replacing the x (or any other variable 

letter) in the open statement with the name or symbol of the object. 

Eg 

 Suppose the open statement in x is:   "x is greater than 3". The universe is the 

collection {1,2,3,4,5} of the first five natural numbers. Replace the x by each of these 

numbers to get the five components (or component statements): 

                                1 is greater than 3        component is F        1 receives an F 

                                2 is greater than 3        component is F        2 receives an F 

                                3 is greater than 3        component is F        3 receives an F 

                                4 is greater than 3        component is T        4 receives an T 

                                5 is   greater   than  3          component   is  T         5 receives   an   T 

Quantifiers 

We need quantifiers to formally express the meaning of the words “all” and “some”. 

The two most important quantifiers are: Universal quantifier, “For all”. Symbol:∀ 

Existential quantifier, “There exists”. Symbol:∃∀x  P(x)asserts that P(x)is true for every x 

in the domain. ∃x  P(x)asserts that P(x)is true for some x in the domain. The quantifiers are 

said to bind the variable x in these expressions. Variables in the scope of some quantifier are 

called bound variables. All other variables in the expression are called free variables. A 

propositional function that does not contain any free variables isa proposition and has a truth 

value. 

The Universal Quantifier 

The expression: x P(x), denotes the universal quantification of the atomic formula 

P(x). Translated into the English language, the expression is understood as: "For all x, 

P(x) holds", "for each x, P(x) holds" or "for every x, P(x) holds".  is called the universal 

quantifier, and x means all the objects x in the universe. If this is followed by P(x) then the 

meaning is that P(x) is true for every object x in the universe. For example, "All cars have 

wheels" could be transformed into the propositional form, x P(x), where: 

• P(x) is the predicate denoting: x has wheels, and 

• the universe of discourse is only populated by cars. 

 

The Existential Quantifier 

The expression:  xP(x), denotes the existential quantification of P(x). Translated into 

the English language, the expression could also be understood as: "There exists an x such 

that P(x)" or "There is at least one x such that P(x)"  is called the existential quantifier, 

and  x means at least one object x in the universe. If this is followed by P(x) then the 

meaning is that P(x) is true for at least one object x of the universe. For example, "Someone 

loves you" could be transformed into the propositional form,  x P(x), where: 



• P(x) is the predicate meaning: x loves you, 

• The universe of discourse contains (but is not limited to) all living creatures. 

Eg 

Premises: 

a. “It’s not sunny and it’s colder than yesterday”¬p∧q 

b. “We will go swimming only if it’s sunny.”r→p 

c. “If we don’t go swimming then we will take canoe trip.”¬r→s 

d. “If we take a canoe trip, then we will be home by sunset.”s→t 

Conclusion: “We will be home by sunset.”t. 

Solution 

(1) ¬p∧q Premise 

(2) ¬p Simplification rule using (1) 

(3) r→p Premise 

(4) ¬r MT using (2) (3) 

(5) ¬r→s Premise 

(6) s MP using (4) (5) 

(7) s→t Premise 

(8) t MP using (6) (7) 

This is a valid argument showing that from the premises (a), (b), (c)and (d), 

we can prove the conclusion t. 

 

Eg 

Suppose P→Q; ¬P→R; Q→S. Prove that ¬R→S. 

Solution 

(1) P→Q  Premise 

(2) ¬P∨Q  Logically equivalent to (1) 

(3) ¬P→R  Premise 

(4) P∨R  Logically equivalent to (3) 

(5) Q∨R  Apply resolution rule to (2)(4) 

(6) ¬R→Q  Logically equivalent to (5) 

(7) Q→S  Premise 

(8) ¬R→S  Apply HS rule to (6)(7). 

 

 



Theory of Inference for Predicate Calculus 

 

Rule of Inference                           Name 

 

(i) ∀xP(x)→p(c) for an arbitrary element c.      Universal Specification(US) 

 

(ii)  P(c) for an arbitrary element c ∀xP(x).      Universal Generalization(UG) 

 

(iii) ∃xP(x)→p(c) for some element c.      Existential Specification(ES) 

 

 (iv)    p(c) for some element c ∃xP(x).      Existential Generalization(EG) 

 

 

 

Eg  

Suppose:  all natural numbers are integers; there exists a natural number; 

Prove that there exists an integer. 

 

Solution 

 

We can formalize this problem as follows.  

N(x): x is a natural number.  

I(x): x is an integer. 

Premise:∀x(N(x)→I(x)),∃x N(x) Need to prove:∃x I(x) 

 

(1)  ∃x N(x)  Premise 

(2) N(c)   Apply existential specification rule to (1) 

(3) ∀x(N(x)→I(x)) Premise 

(4) N(c)→I(c)  Apply universal specification rule to (3) 

(5) I(c)   Apply MP rule to (2)(4) 

(6) ∃x I(x)   Apply existential generalization rule to (5) 

REVIEW QUESTIONS 

1) Define conjunctive normal form. 

2) What is meant by Open statement. 

3) Obtain  PCNF and PDNF of (¬p→r)˄(q↔p). 

4) Obtain the conjunctive normal form ¬(p˅q)↔(p˄q) 

5) Obtain PDNF of (P˄Q)˅(¬P˄R)˅(Q˄R) 

6) What is disjunctive normal?  give example. 

7) Define PCNF and PDNF. 

8) What is universal quantifier ? Give example. 
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➢ Binary Trees 

------------------------------------------------------------------------------------------------------------ 

GRAPH THEORY 

Basic Concepts 

Graph 

A graph is a pictorial representation of a set of objects where some pairs of objects 

are connected by links. The interconnected objects are represented by points termed 

as vertices, and the links that connect the vertices are called edges. 

Formally, a graph is a pair of sets (V, E), where V is the set of vertices and E is the 

set of edges, connecting the pairs of vertices. Take a look at the following graph  

 

In the above graph, 

V = {a, b, c, d, e} 

E = {ab, ac, bd, cd, de} 

Loop 

In a graph, if an edge is drawn from vertex to itself, it is called a loop. 

Eg 

 

In the above graph, V is a vertex for which it has an edge (V, V) forming a loop. 



Parallel Edges 

In a graph, if a pair of vertices is connected by more than one edge, then those edges 

are called parallel edges. 

Eg 

 

In the above graph, ‘a’ and ‘b’ are the two vertices which are connected by two edges ‘ab’ 

and ‘ab’ between them. So it is called as a parallel edge. 

Simple Graph 

A graph with no loops and no parallel edges is called a simple graph. 

• The maximum number of edges possible in a single graph with ‘n’ vertices 

is nC2 where nC2 = n(n – 1)/2. 

• The number of simple graphs possible with ‘n’ vertices = 2nc2 = 2n(n-1)/2. 

Eg 

In the following graph, there are 3 vertices with 3 edges which is maximum 

excluding the parallel edges and loops. This can be proved by using the above formulae. 

 

The maximum number of edges with n=3 vertices − 

nC2 = n(n–1)/2 

= 3(3–1)/2 

= 6/2 

= 3 edges 

Directed Graph 

In a directed graph, each edge has a direction. 

Eg 



 

In the above graph, we have seven vertices ‘a’, ‘b’, ‘c’, ‘d’, ‘e’, ‘f’, and ‘g’, and eight 

edges ‘ab’, ‘cb’, ‘dc’, ‘ad’, ‘ec’, ‘fe’, ‘gf’, and ‘ga’. As it is a directed graph, each edge bears 

an arrow mark that shows its direction. Note that in a directed graph, ‘ab’ is different from 

‘ba’. 

Degree of Vertex 

It is the number of vertices adjacent to a vertex V. 

Notation − deg(V). 

In a simple graph with n number of vertices, the degree of any vertices is − 

deg(v) ≤ n – 1 ∀ v ∈ G 

A vertex can form an edge with all other vertices except by itself. So the degree of a 

vertex will be up to the number of vertices in the graph minus 1. This 1 is for the self-

vertex as it cannot form a loop by itself. If there is a loop at any of the vertices, then it is not 

a Simple Graph. 

Degree of vertex can be considered under two cases of graphs − 

• Undirected Graph 

• Directed Graph 

Degree of Vertex in an Undirected Graph 

An undirected graph has no directed edges. Consider the following examples. 

Eg 

Take a look at the following graph − 

 

In the above Undirected Graph, 

• deg(a) = 2, as there are 2 edges meeting at vertex ‘a’. 

• deg(b) = 3, as there are 3 edges meeting at vertex ‘b’. 

• deg(c) = 1, as there is 1 edge formed at vertex ‘c’ 



• So ‘c’ is a pendent vertex. 

• deg(d) = 2, as there are 2 edges meeting at vertex ‘d’. 

• deg(e) = 0, as there are 0 edges formed at vertex ‘e’. 

• So ‘e’ is an isolated vertex. 

Degree of Vertex in a Directed Graph 

In a directed graph, each vertex has an indegree and an outdegree. 

Indegree of a Graph 

• Indegree of vertex V is the number of edges which are coming into the vertex V. 

• Notation − deg−(V). 

Outdegree of a Graph 

• Outdegree of vertex V is the number of edges which are going out from the vertex 

V. 

• Notation − deg+(V). 

Consider the following examples. 

Eg 

Take a look at the following directed graph. Vertex ‘a’ has two edges, ‘ad’ and 

‘ab’, which are going outwards. Hence its outdegree is 2. Similarly, there is an edge 

‘ga’, coming towards vertex ‘a’. Hence the indegree of ‘a’ is 1. 

 

 
 

The indegree and outdegree of other vertices are shown in the following table − 

Vertex Indegree Outdegree 

a 1 2 

b 2 0 



c 2 1 

d 1 1 

e 1 1 

f 1 1 

g 0 2 

 

Null Graph 

A graph having no edges is called a Null Graph. 

Eg 

 

In the above graph, there are three vertices named ‘a’, ‘b’, and ‘c’, but there are no 

edges among them. Hence it is a Null Graph. 

Trivial Graph 

A graph with only one vertex is called a Trivial Graph. 

Eg 

 

In the above shown graph, there is only one vertex ‘a’ with no other edges. Hence it is a 

Trivial graph. 

Connected Graph 

A graph G is said to be connected if there exists a path between every pair of 

vertices. There should be at least one edge for every vertex in the graph. So that we can say 

that it is connected to some other vertex at the other side of the edge. 

Eg 



In the following graph, each vertex has its own edge connected to other edge. 

Hence it is a connected graph. 

 

Disconnected Graph 

A graph G is disconnected, if it does not contain at least two connected vertices. 

Eg 

The following graph is an example of a Disconnected Graph, where there are two 

components, one with ‘a’, ‘b’, ‘c’, ‘d’ vertices and another with ‘e’, ’f’, ‘g’, ‘h’ vertices. 

 

The two components are independent and not connected to each other. Hence it is 

called disconnected graph. 

Regular Graph 

A graph G is said to be regular, if all its vertices have the same degree. In a graph, 

if the degree of each vertex is ‘k’, then the graph is called a ‘k-regular graph’. 

Eg 

In the following graphs, all the vertices have the same degree. So these graphs 

are called regular graphs. 

 



In both the graphs, all the vertices have degree 2. They are called 2-Regular Graphs. 

Complete Graph 

A simple graph with ‘n’ mutual vertices is called a complete graph and it is denoted 

by ‘Kn’. In the graph, a vertex should have edges with all other vertices, then it called a 

complete graph. 

In other words, if a vertex is connected to all other vertices in a graph, then it is called a 

complete graph. 

Eg 

In the following graphs, each vertex in the graph is connected with all the 

remaining vertices in the graph except by itself. 

 

Bipartite Graph 

A simple graph G = (V, E) with vertex partition V = {V1, V2} is called a bipartite 

graph if every edge of E joins a vertex in V1 to a vertex in V2. 

In general, a Bipartite graph has two sets of vertices, let us say, V1 and V2, and if an 

edge is drawn, it should connect any vertex in set V1 to any vertex in set V2. 

Eg 

 

In this graph, you can observe two sets of vertices − V1 and V2. Here, two edges named ‘ae’ 

and ‘bd’ are connecting the vertices of two sets V1 and V2. 

Complete Bipartite Graph 

A bipartite graph ‘G’, G = (V, E) with partition V = {V1, V2} is said to be a complete 

bipartite graph if every vertex in V1 is connected to every vertex of V2. 



In general, a complete bipartite graph connects each vertex from set V1 to each vertex from 

set V2. 

Eg 

The following graph is a complete bipartite graph because it has edges 

connecting each vertex from set V1 to each vertex from set V2. 

 

If |V1| = m and |V2| = n, then the complete bipartite graph is denoted by Km, n. 

• Km,n has (m+n) vertices and (mn) edges. 

• Km,n is a regular graph if m=n. 

In general, a complete bipartite graph is not a complete graph. 

Isomorphic Graphs 

Two graphs G1 and G2 are said to be isomorphic if − 

• Their number of components (vertices and edges) are same. 

• Their edge connectivity is retained. 

Note 

If G1 ≡ G2 then − 

|V(G1)| = |V(G2)| 

|E(G1)| = |E(G2)| 

Degree sequences of G1 and G2 are same. 

If the vertices {V1, V2, .. Vk} form a cycle of length K in G1, then the vertices {f(V1), 

f(V2),… f(Vk)} should form a cycle of length K in G2. 

All the above conditions are necessary for the graphs G1 and G2 to be isomorphic, but not 

sufficient to prove that the graphs are isomorphic. 

• (G1 ≡ G2) if and only if (G1− ≡ G2−) where G1 and G2 are simple graphs. 

• (G1 ≡ G2) if the adjacency matrices of G1 and G2 are same. 

• (G1 ≡ G2) if and only if the corresponding subgraphs of G1 and G2 (obtained by 

deleting some vertices in G1 and their images in graph G2) are isomorphic. 

 



Eg 

Which of the following graphs are isomorphic? 

 

In the graph G3, vertex ‘w’ has only degree 3, whereas all the other graph vertices has 

degree 2. Hence G3 not isomorphic to G1 or G2. 

Matrix Representation of Graphs 

A graph can be represented using Adjacency Matrix way. 

Adjacency Matrix 

An Adjacency Matrix A[V][V] is a 2D array of size V × V where $V$ is the number 

of vertices in a undirected graph. If there is an edge between Vx to Vy then the value of 

A[Vx][Vy]=1 and A[Vy][Vx]=1, otherwise the value will be zero. 

For a directed graph, if there is an edge between Vx to Vy, then the value of A[Vx][Vy]=1, 

otherwise the value will be zero. 

Adjacency Matrix of an Undirected Graph 

Let us consider the following undirected graph and construct the adjacency matrix – 

Eg 

 

Adjacency matrix of the above undirected graph will be − 

 
a B C D 

a 0 1 1 0 

b 1 0 1 0 

c 1 1 0 1 



d 0 0 1 0 

Adjacency Matrix of a Directed Graph 

Let us consider the following directed graph and construct its adjacency matrix – 

Eg 

 

Adjacency matrix of the above directed graph will be − 

 
a b C D 

A 0 1 1 0 

B 0 0 1 0 

C 0 0 0 1 

D 0 0 0 0 

 

Warshall Algorithm 

The all pair shortest path algorithm is also known as Floyd-Warshall algorithm is used 

to find all pair shortest path problem from a given weighted graph. As a result of this 

algorithm, it will generate a matrix, which will represent the minimum distance from any 

node to all other nodes in the graph. 

Eg 

 

At first the output matrix is same as given cost matrix of the graph. After that the output 

matrix will be updated with all vertices k as the intermediate vertex. 



The time complexity of this algorithm is O(V3), here V is the number of vertices in the 

graph. 

Algorithm 

Begin 

   for k := 0 to n, do 

      for i := 0 to n, do 

         for j := 0 to n, do 

            if cost[i,k] + cost[k,j] < cost[i,j], then 

               cost[i,j] := cost[i,k] + cost[k,j] 

            done 

         done 

      done 

      display the current cost matrix 

End 

Tree 

A connected acyclic graph is called a tree. In other words, a connected graph with 

no cycles is called a tree. 

The edges of a tree are known as branches. Elements of trees are called their nodes. 

The nodes without child nodes are called leaf nodes. 

A tree with ‘n’ vertices has ‘n-1’ edges. If it has one more edge extra than ‘n-1’, then 

the extra edge should obviously has to pair up with two vertices which leads to form a cycle. 

Then, it becomes a cyclic graph which is a violation for the tree graph. 

Eg 

The graph shown here is a tree because it has no cycles and it is connected. It has four 

vertices and three edges, i.e., for ‘n’ vertices ‘n-1’ edges as mentioned in the definition. 

 

Note − Every tree has at least two vertices of degree one. 

Center of a Tree 

The center of a tree is a vertex with minimal eccentricity. The eccentricity of a vertex 

‘X’ in a tree ‘G’ is the maximum distance between the vertex ‘X’ and any other vertex of the 

tree. The maximum eccentricity is the tree diameter. If a tree has only one center, it is called 

Central Tree and if a tree has only more than one centers, it is called Bi-central Tree. Every 

tree is either central or bi-central. 

 

Stps to find centers of a tree 



Step 1 − Remove all the vertices of degree 1 from the given tree and also remove their 

incident edges. 

Step 2 − Repeat step 1 until either a single vertex or two vertices joined by an edge is left. If 

a single vertex is left then it is the center of the tree and if two vertices joined by an edge is 

left then it is the bi-center of the tree. 

Eg 

Find out the center/bi-center of the following tree − 

 

Solution 

At first, we will remove all vertices of degree 1 and also remove their incident edges and get 

the following tree − 

 

Again, we will remove all vertices of degree 1 and also remove their incident edges and get 

the following tree − 

 

Finally we got a single vertex ‘c’ and we stop the algorithm. As there is single vertex, this 

tree has one center ‘c’ and the tree is a central tree. 

 

Spanning Trees 

Let G be a connected graph, then the sub-graph H of G is called a spanning tree of G if − 

• H is a tree 

• H contains all vertices of G. 

A spanning tree T of an undirected graph G is a subgraph that includes all of the vertices of 

G. 

 



Eg 

 

In the above example, G is a connected graph and H is a sub-graph of G. 

Clearly, the graph H has no cycles, it is a tree with six edges which is one less than the total 

number of vertices. Hence H is the Spanning tree of G. 

Minimum Spanning Tree 

A spanning tree with assigned weight less than or equal to the weight of every 

possible spanning tree of a weighted, connected and undirected graph $G$, it is called 

minimum spanning tree (MST). The weight of a spanning tree is the sum of all the weights 

assigned to each edge of the spanning tree. 

Eg 

 

Kruskal's Algorithm 

Kruskal's algorithm is a greedy algorithm that finds a minimum spanning tree for a 

connected weighted graph. It finds a tree of that graph which includes every vertex and the 

total weight of all the edges in the tree is less than or equal to every possible spanning tree. 

Algorithm 

Step 1 − Arrange all the edges of the given graph $G (V,E)$ in ascending order as per their 

edge weight. 



Step 2 − Choose the smallest weighted edge from the graph and check if it forms a cycle 

with the spanning tree formed so far. 

Step 3 − If there is no cycle, include this edge to the spanning tree else discard it. 

Step 4 − Repeat Step 2 and Step 3 until $(V-1)$ number of edges are left in the spanning 

tree. 

Eg 

Suppose we want to find minimum spanning tree for the following graph G using 

Kruskal’s algorithm. 

 

Solution 

From the above graph we construct the following table − 

Edge 

No. 

Vertex 

Pair 

Edge 

Weight 

E1 (a, b) 20 

E2 (a, c) 9 

E3 (a, d) 13 

E4 (b, c) 1 

E5 (b, e) 4 

E6 (b, f) 5 

E7 (c, d) 2 

E8 (d, e) 3 

E9 (d, f) 14 



Now we will rearrange the table in ascending order with respect to Edge weight − 

Edge 

No. 

Vertex 

Pair 

Edge 

Weight 

E4 (b, c) 1 

E7 (c, d) 2 

E8 (d, e) 3 

E5 (b, e) 4 

E6 (b, f) 5 

E2 (a, c) 9 

E3 (a, d) 13 

E9 (d, f) 14 

E1 (a, b) 20 

 
 

 



 

Since we got all the 5 edges in the last figure, we stop the algorithm and this is the minimal 

spanning tree and its total weight is $(1 + 2 + 3 + 5 + 9) = 20$. 

Prim's Algorithm 

Prim's algorithm, discovered in 1930 by mathematicians, Vojtech Jarnik and Robert 

C. Prim, is a greedy algorithm that finds a minimum spanning tree for a connected weighted 

graph. It finds a tree of that graph which includes every vertex and the total weight of all the 

edges in the tree is less than or equal to every possible spanning tree. Prim’s algorithm is 

faster on dense graphs. 

Algorithm 

• Initialize the minimal spanning tree with a single vertex, randomly chosen from the 

graph. 

• Repeat steps 3 and 4 until all the vertices are included in the tree. 

• Select an edge that connects the tree with a vertex not yet in the tree, so that the 

weight of the edge is minimal and inclusion of the edge does not form a cycle. 

• Add the selected edge and the vertex that it connects to the tree. 

Eg 

Suppose we want to find minimum spanning tree for the following graph G using 

Prim’s algorithm. 



 

Solution 

Here we start with the vertex ‘a’ and proceed. 



 

This is the minimal spanning tree and its total weight is $(1 + 2 + 3 + 5 + 9) = 20$. 

 

Shortest Path Problem 

Dijkstra’s Algorithm 

Dijkstra’s algorithm solves the single-source shortest-paths problem on a directed 

weighted graph G = (V, E), where all the edges are non-negative (i.e., w(u, v) ≥ 0 for each 

edge (u, v) Є E). 

In the following algorithm, we will use one function Extract-Min(), which extracts the node 

with the smallest key. 

Eg 

Let us consider vertex 1 and 9 as the start and destination vertex respectively. 

Initially, all the vertices except the start vertex are marked by ∞ and the start vertex is 

marked by 0. 

Vertex Initial 
Step1 

V1 

Step2 

V3 

Step3 

V2 

Step4 

V4 

Step5 

V5 

Step6 

V7 

Step7 

V8 

Step8 

V6 

1 0 0 0 0 0 0 0 0 0 



2 ∞ 5 4 4 4 4 4 4 4 

3 ∞ 2 2 2 2 2 2 2 2 

4 ∞ ∞ ∞ 7 7 7 7 7 7 

5 ∞ ∞ ∞ 11 9 9 9 9 9 

6 ∞ ∞ ∞ ∞ ∞ 17 17 16 16 

7 ∞ ∞ 11 11 11 11 11 11 11 

8 ∞ ∞ ∞ ∞ ∞ 16 13 13 13 

9 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 20 

Hence, the minimum distance of vertex 9 from vertex 1 is 20. And the path is 

1→ 3→ 7→ 8→ 6→ 9 

This path is determined based on predecessor information. 

 

Rooted Tree 

A rooted tree $G$ is a connected acyclic graph with a special node that is called the 

root of the tree and every edge directly or indirectly originates from the root. An ordered 

rooted tree is a rooted tree where the children of each internal vertex are ordered. If every 

internal vertex of a rooted tree has not more than m children, it is called an m-ary tree. If 

every internal vertex of a rooted tree has exactly m children, it is called a full m-ary tree. If 

$m = 2$, the rooted tree is called a binary tree. 

Eg 



 

Binary Search Tree 

Binary Search tree is a binary tree which satisfies the following property − 

• ‘X’ in left sub-tree of vertex V, Value(X) \le Value (V) 

• ‘Y’ in right sub-tree of vertex V, Value(Y) \ge Value (V) 

So, the value of all the vertices of the left sub-tree of an internal node ‘V’ are less than or 

equal to ‘V’ and the value of all the vertices of the right sub-tree of the internal node ‘V’ are 

greater than or equal to ‘V’. The number of links from the root node to the deepest node is 

the height of the Binary Search Tree. 

Eg 

 

Traversing a Binary Tree 

Traversal is a process to visit all the nodes of a tree and may print their values too. 

Because, all nodes are connected via edges (links) we always start from the root (head) 

node. That is, we cannot randomly access a node in a tree. There are three ways which we 

use to traverse a tree − 

• In-order Traversal 

• Pre-order Traversal 

• Post-order Traversal 

Generally, we traverse a tree to search or locate a given item or key in the tree or to print all 

the values it contains. 

 



In-order Traversal 

In this traversal method, the left subtree is visited first, then the root and later the right sub-

tree. We should always remember that every node may represent a subtree itself. 

If a binary tree is traversed in-order, the output will produce sorted key values in an 

ascending order. 

 

We start from A, and following in-order traversal, we move to its left subtree B. B is also 

traversed in-order. The process goes on until all the nodes are visited. The output of inorder 

traversal of this tree will be − 

D → B → E → A → F → C → G 

Algorithm 

Until all nodes are traversed − 

Step 1 − Recursively traverse left subtree. 

Step 2 − Visit root node. 

Step 3 − Recursively traverse right subtree. 

Pre-order Traversal 

In this traversal method, the root node is visited first, then the left subtree and finally 

the right subtree. 

 

We start from A, and following pre-order traversal, we first visit A itself and then move to 

its left subtree B. B is also traversed pre-order. The process goes on until all the nodes are 

visited. The output of pre-order traversal of this tree will be − 



A → B → D → E → C → F → G 

Algorithm 

Until all nodes are traversed − 

Step 1 − Visit root node. 

Step 2 − Recursively traverse left subtree. 

Step 3 − Recursively traverse right subtree. 

Post-order Traversal 

In this traversal method, the root node is visited last, hence the name. First we traverse the 

left subtree, then the right subtree and finally the root node. 

 

We start from A, and following Post-order traversal, we first visit the left subtree B. B is 

also traversed post-order. The process goes on until all the nodes are visited. The output of 

post-order traversal of this tree will be − 

D → E → B → F → G → C → A 

Algorithm 

Until all nodes are traversed − 

Step 1 − Recursively traverse left subtree. 

Step 2 − Recursively traverse right subtree. 

Step 3 − Visit root node. 

 

REVIEW QUESTIONS 

1) Define Binary Tree. 

2) Define indegree and outdegree. 

3) Explain the representation of trees. 

4) Explain in detail about matrix representation of graphs with example. 

5) Define spanning tree. 

6) Define Rooted tree. 



7) Explain traversal of binary tree. 

8) What is meant by complete asymmetric graph. 
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LINEAR PROGRAMMING PROBLEM(LPP) 

➢ Mathematical Formulation 

➢ Graphical Solution 

➢ Slack and Surplus Variable 

➢ Simplex Method 

➢ Two Phase Method 

------------------------------------------------------------------------------------------------------------ 

LINEAR PROGRAMMING PROBLEM(LPP) 

Decision Variables and their Relationships 

  The decision variable refers to any candidate (person, service, projects, jobs, tasks) 

competing with other decision variables for limited resources. These variables are usually 

interrelated in terms of utilization of resources and need simultaneous solutions, i.e., the 

relationship among these variables should be linear. 

 

Objective Function 

 The Linear Programming Problem must have a well defined objective function to 

optimize the results. For instance, minimization of cost or maximization of profits. It should 

be expressed as linear function of decision variables (Z = X1 + X2, where Z represents the 

objective, i.e., minimization/maximization, X1 and X2 are the decision variables directly 

affecting the Z value). 

Constraints 

 There would be limitations on resources which are to be allocated among various 

competing activities. These must be capable of being expressed as linear equalities or 

inequalities in terms of decision variables. 

Non-Negativity Restrictions 

 All variables must assume non-negative values. If any of the variable is unrestricted 

in sign, a tool can be employed which will enforce the negativity without changing the 

original information of a problem. 

Mathematical Formulation of Linear Programming Problems(LPP)  

   Steps for formulating LPP, 

1. Identify the nature of the problem (maximization/minimization problem). 

2. Identify the number of variables to establish the objective function. 

3. Formulate the constraints. 



4. Develop non-negativity constraints. 

 

Eg 

 A firm manufactures 2 types of products A & B and sells them at a profit or ` 2 on 

type A & ` 3 on type B. Each product is processed on 2 machines G & H. Type a requires1 

minute of processing time on G and 2 minutes on H. Type B requires one minute on G &1 

minute on H. The machine G is available for not more than 6 hrs. 40 mins. while machine H 

is available for 10 hrs. during any working day. Formulate the problem as LPP. 

Solution 

 Let, x1 be the no. of products of type A. 

       x2 be the no. of products of type B. 

Since the profit on type A is ` 2 per product, 2x1 will be the profit on selling x1 units 

of type A. Similarly 3x2 will be the profit on selling x2 units of type B. 

Hence the objective function will be,Maximize ‘Z’ = 2x1 + 3x2 is subject to 

constraints. 

Since machine ‘G’ takes one minute on ‘A’ and one minute on ‘B’, the total number 

of minutes required is given by x1 + x2. Similarly, on machine ‘H’ 2x1 + x2. But ‘G’ is not 

available for more than 400 minutes. Therefore, x1 + x2 400 and H is not available for more 

than 600 minutes, therefore, 2x1 + x2  600 and x1, x2,  0, i.e., 

 

x1 + x2400   (Time availability constraints) 

2x1 + x2600 

x1, x20  (Non-negativity constraints) 

Graphical Solutions under Linear Programming 

Steps 

1. Consider each inequality constraint as an equation. 

2. Plot each equation on the graph as each will geometrically represent a straight line. 

3. Plot the feasible region, every point on the line will satisfy the equation on the line. 

4. If the inequality constraint corresponding to that line is less than or equal to, then 

the region below the line lying in the 1st quadrant (as shown in above graph) is shaded (due 

to non-negativity of variables); for the inequality constraint with greater than or equal to sign, 

the region above the line in the 1st quadrant is shaded. The points lying in common region 

will satisfy all the constraints simultaneously. Hence, it is called feasible region. 



5. Identify the co-ordinates of the corner points. 

6. Find the ‘Z’ value by substituting the co-ordinates of corner points to the objective 

functions. 

 

Eg 

 Maximize ‘Z’ =3x1 + 5x2  

(Subject to constraints) 

x1 + 2x2  2,000 

x1 + x2  1,500 

x2  600  

x1, x20 

 

Solution 

 Step 1: Convert the inequalities into equalities and find the divisible of the equalities. 

 

Step 2:  Fix up the graphic scale.  

Maximum points =2,000  

Minimum points =600  

2 cms =500 points 

 

 

Step 3:  Graph the data 

 

 



 

Step 4: Find the co-ordinates of the corner points 

 

 
 

At   ‘B’: x1 + 2x2 =2,000   (1) 

       x1 + x2 =1,500                             (2)  

       x2 =500 

 
Notes Put x2 = 500 in eq. (1),  

 x1 + 2(500) = 2,000 

Therefore x1 = 2,000 – 1,000 

Therefore x1 = 1,000 

At ‘C’: x1 + 2x2 = 2,000 ………(1) 

 x2 = 600 ………(2) 

                   Put x2 = 600 in eq. (1),  

 x1 + 2(600) = 2,000  

 x1 = 2,000 – 1,200  

Therefore x1 = 800  

 

Step 5: Substitute the co-ordinates of corner points into the objective 

function.                                                   Maximize ‘Z’ = 3x1 + 5x2 

At ‘O’, Z =  0 + 0 = 0 

At ‘A’, Z = 3 (1,500) + 5 (0) = 4,500 

At ‘B’, Z = 3 (1,000) + 5 (500) = 5,500 

At ‘C’, Z = 3 (800) + 5 (600) = 5,400 

At ‘C’, Z = 3 (0) + 5 (600) = 3,000 

Result 

 

A maximum profit of ` 5,500 can be earned by producing 1,000 dolls of basic version 

and 500 dolls of deluxe version. 

 

 

 

 



Slack and Surplus Variables 

 
To convert an equation of the form 

ai1x1 + ai2x2 + ··· + a1nxn ≤ bi to standard form  

we introduce a slack variable yi to obtain 

 ai1x1 + ai2x2+···+a1nxn+ yi = bi.  

To convert an equation of the form 

ai1x1 + ai2x2 + ··· + a1nxn ≥ bi to standard form  

we introduce a surplus variable yi to obtain 

 ai1x1 + ai2x2+···+a1nxn- yi = bi. 

 

Eg 

  Maximise ‘Z’ = 4x1 + 3x2  
[Subject to constraints] 

2x1 + x2 ≤ 30 

x1 + x2 ≥ 24 

Where, x1, x2  0  [Non-negativity constraints] 
 

Standard Form 
 Convert the inequalities into equalities adding slack and surplus variables. 

  Maximise ‘Z’ = 4x1 + 3x2  
[Subject to constraints] 

2x1 + x2 + x3 = 30 

x1 + x2 – x4 =  24 

Where, x1, x2, x3, x4  0  [Non-negativity 
constraints] 

 

 
Simplex Method of Linear Programming 

 

Steps: 

i) Convert the inequalities into equalities by adding slack variables, surplus 

variables or artificial variables, as the case may be. 

ii) Identify the coefficient of equalities and put them into a matrix form AX = B 

Where "A" represents a matrix of coefficient, "X" represents a vector of unknown 

quantities and B represents a vector of constants, leads to AX = B [This is 

according to system of equations]. 

iii) Tabulate the data into the first iteration of Simplex Method. 



 

(a) Cj is the coefficient of unknown quantities in the objective function. 

Zj = CBiYij (Multiples and additions of coefficients in the table, i.e., CB1 × Y11 + CB2 
× 

Y12) 

(b) Identify the Key or Pivotal column with the minimum element of Zj - Cj 

denoted as 'KC' throughout to the problems in the chapter. 

(c) Find the 'Minimum Ratio' i.e., XBi/Yij. 

(d) Identify the key row with the minimum element in a minimum ratio column. 

Key row is denoted as 'KP'. 

(e) Identify the key element at the intersecting point of key column and key row, 

which is put into a box  throughout to the problems in the chapter. 

iv) Reinstate the entries to the next iteration of the simplex method. 

a) The pivotal or key row is to be adjusted by making the key element as '1' 

and dividing the other elements in the row by the same number. 

b) The key column must be adjusted such that the other elements other than 

key elements should be made zero. 

 

c) The same multiple should be used to other elements in the row to adjust the rest of the 

elements. But, the adjusted key row elements should be used for deducting out of the earlier 

iteration row 

d) The same iteration is continued until the values of Zj – Cj become either '0' or positive. 

v)  Find the 'Z' value given by CB, XB. 

 

Eg 

Solve by Simplex method. 



 

 



 

 

Two Phase Method 

 

 



 

Eg 

 



 

 
 



REVIEW QUESTIONS 

1) Define slack and surplus variable. 

2) What is optimum basic feasible solution. 

3) Write the algorithm for graphical method. 

4) Write mathematical formulation of LPP. 

5) Write algorithm for Simplex method. 

6) Define non negativity constraints. 

 



UNIT – V 

TRANSPORTATION PROBLEM(TP) 

➢ Transportation Table 

➢ Solution of Transportation Problem 

➢ Testing for Optimality 

➢ Assignment Problem 

➢ The Assignment Method 

➢ Special Cases in Assignment Problems 

-------------------------------------------------------------------------------------------------------------------- 

TRANSPORTATION PROBLEM(TP) 

Transportation problem is a particular class of linear programming, which is associated with 

day-to-day activities in our real life and mainly deals with logistics. It helps in solving problems on 

distribution and transportation of resources from one place to another. The goods are transported from 

a set of sources (e.g., factory) to a set of destinations (e.g., warehouse) to meet the specific 

requirements. In other words, transportation problems deal with the transportation of a product 

manufactured at different plants (supply origins) to a number of different warehouses (demand 

destinations). The objective is to satisfy the demand at destinations from the supply constraints at the 

minimum transportation cost possible. To achieve this objective, we must know the quantity of 

available supplies and the quantities demanded. 

 

Mathematical Formulation of TP 

 



 

Transportation Table 

 

 

One. 



Initial Basic Feasible Solution 

 

 

Northwest Corner Method(NWC) 

 

 

 

 

 

 



Eg 

 Find Initial Basic Feasible Solution to the following TP by NWC method. 

 

 

 

 

 



Row and Column Minima Method (RCMM) 

 

Eg 

 Find Initial Basic Feasible Solution to the following TP by RCMM method. 

 

 

 



Vogel’s Approximation Method (VAM) 

 

Eg 

 Find Initial Basic Feasible Solution to the following TP by VAM method. 

 



 

 

 



Test for Optimality 

 Stepping Stone Method 

 

 

 

 

 



Eg 

 Consider the Following TP. Find the Optimum solution. 

 

 

 



 

Assignment Problem 

 

 



 

 

 



 

 

Types of Assignment Problem 

 

Mathematical Formulation of AP 

 



 

 

 

 

 

 

 

 



Eg 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Special Case in Assignment Problems   

     Maximization Case in Assignment Problem 

 

 



 

 

 
 

 

 



REVIEW QUESTIONS 

1) Define assignment problem. 

2) Define IBFS. 

3) Write algorithm for VAM method. 

4) Write the mathematical formulation of TP. 

5) What is meant by unbalanced TP. 

6) Write the steps for assignment problem. 
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