UNIT -1
LOGIC
» TF Statement
» Connectives
» Atomic and Compound Statements
» WFF
» Truth Table of a Formula
» Tautology
>

Tautological Implications and Equivalence of Formulae

TF Statement

A proposition is a collection of declarative statements that has either a truth value
"true” or a truth value "false". A propositional consists of propositional variables and
connectives. We denote the propositional variables by capital letters (A, B, etc). The
connectives connect the propositional variables.

Eg

e "Man is Mortal", it returns truth value “TRUE”
"12 + 9 =3 - 2", it returns truth value “FALSE”

The following is not a Proposition —

e "Ais less than 2". It is because unless we give a specific value of A, we cannot say
whether the statement is true or false.

Connectives

A Logical Connective is a symbol which is used to connect two or more propositional
or predicate logics in such a manner that resultant logic depends only on the input logics and
the meaning of the connective used.

Generally there are five connectives which are ,
e OR (V)
e AND (A)
e Negation/ NOT ()
o Implication / if-then (—)

« Ifandonly if ().

OR (V

The OR operation of two propositions A and B (written as A v B) is true if at least
any of the propositional variable A or B is true.

The truth table is as follows —

A B AVB
True True True
True False True
False True True
False False False

AND (A)

The AND operation of two propositions A and B (written as $A \land B$) is true if
both the propositional variable A and B is true.

The truth table is as follows —

A B AAB
True True True
True False False
False True False
False False False
Negation (=)

The negation of a proposition A (written as = A) is false when A is true and is true
when A is false.

The truth table is as follows —

A - A

True False

False True

Implication / if-then (—)

An implication A — B is the proposition “if A, then B”. It is false if A is true and B
is false. The rest cases are true.

The truth table is as follows —

A B A—B
True True True
True False False
False True True
False False True

If and only if (&)

A < B is bi-conditional logical connective which is true when p and g are same, i.e.
both are false or both are true.

The truth table is as follows —

A B AeB
True True True
True False False
False True False

False False True

Atomic and Compound Statements

An atomic sentence is an atomic formula containing no variables. It follows that an
atomic sentence contains no logical connectives, variables or quantifiers. A sentence
consisting of one or more sentences and a logical connective is a compound (or molecular)
sentence.

Eg
Itisraining - simple statement
Jack and jill went up the hill - compound statement

Well-formed Formula (wff)

Not all strings can represent propositions of predicate logic. Those that produce a
proposition when their symbols are interpreted are called well-formed formulas of the first
order predicate logic. A predicate name followed by a list of variables such as P(x, y),
where P is a predicate name, and x and y are variables, is called an atomic formula.

WHffs are constructed using the following rules:

1. True and False are wffs.

2. Each propositional constant (i.e. specific proposition).

3. Each atomic formula (i.e. a specific predicate with variables) is a wff.

4. If Aand B are wffs, thensoare -A, (A Vv B), (AA B), (A — B), and (A < B).

Parsing Tree

Every wff we can associate a tree called a parsing tree.

Eg
q ‘I r
p (! X p /—| = \\\ /l_l
// _\ (_‘)\\\ / " s
E \)/ ""i“‘” q ‘ /\.; (—r)
TR = S g //ﬂﬁq) v (1)
~" (q=>7r) PAEQ) e
PAlg=T)) ~—e (PAEDD(—QV(—1)

=
S

The Truth Table of a Formula

A truth table shows how the truth or falsity of a compound statement depends on the
truth or falsity of the simple statements from which it's constructed.

&

Construct a truth table for the formula = (£ — @} |

P Q -P P =0 =P A (P = Q)
T T F T F
T F F F F
¥ T T T T
F F T 1 1
Tautology
A tautology is a formula which is "always true" --- that is, it is true for every

assignment of truth values to its simple components. You can think of a tautology as a rule of
logic.

The opposite of a tautology is a contradiction, a formula which is "always false". In

other words, a contradiction is false for every assignment of truth values to its simple
components.

Eg
Show that (£ = @)V (@ — P} js a tautology.

| construct the truth table for (£ — @)V (€ — P} and show that the formula is always true.

P Q P—Q Q— P (P=Q)vI(Q— P)
. I n n T
I F F I 1
F T 1 F T
F F 1 I 1

The last column contains only T's. Therefore, the formula is a tautology.

Tautological Implications and Equivalence of Formulae

Tautologies by adding ones involving the conditional and the biconditional. From
now on, we use small letters like p and g to denote atomic statements only, and uppercase
letters like A and B to denote statements of all types, compound or atomic.

We first look at some tautological implications, tautologies of the form A-B. You should
check the truth table of each of the statements we give to see that they are, indeed,

tautologies.

Eg

p g |p=q] (P=a)~p | [(P—0)~p]—=q
T T T T T
T F F F T
F T T F T
F F T F T

REVIEW QUESTIONS

1)
2)
3)
4)
5)
6)

7)

8)

Define Well Formed formula.

What is the truth table for conditional statement?
Discuss about tautological implication.

Explain about Connectives.

Show that (P—Q)A(R—Q)and (PVR)—Q are equivalent.

Prove whether the following formula (PA(P—Q))—Q) is a tautology or
not.

What is meant by atomic and compound statements.

Define tautology.

UNIT -1
NORMAL FORMS

» Principal Normal Forms

» Theory of Inference

» Open Statements

» Quantifiers

» Valid Formulae and Equivalence

» Theory of Inference for Predicate Calculus

NORMAL FORMS

Principal Normal Form

Disjunctive Normal Forms (DNF)

A formula which is equivalent to a given formula and which consists of a sum of
elementary products is called a disjunctive normal form of given formula.

Eq

PA~QVQAR)V(~PAQA~R)
. The DNF of formula is not unique.
Conjunctive Normal Form (CNF)
A formula which is equivalent to a given formula and which consists of a product of
elementary products is called a conjunctive normal form of given formula.
Eg
P~-VQAQVR)A(~PVQV~R)

. The CNF of formula is not unique.
. If every elementary sum in CNF is tautology, then given formula is also
tautology.

Principle Disjunctive Normal Form (PDNF)
An equivalent formula consisting of disjunctions of minterms only is called the
principle disjunctive normal form of the formula.
It is also known as sum-of-products canonical form.

Eg
PA~QA~R)VIPA~QAR)V(~PA~QA~R)
. The minterm consists of conjunctions in which each statement variable or its
negation, but not both, appears only once.
. The minterms are written down by including the variable if its truth value is T

and its negation if its truth value is F.
Principle Conjunctive Normal Form (PCNF)

An equivalent formula consisting of conjunctions of maxterms only is called the
principle conjunctive normal form of the formula.
It is also known as product-of-sums canonical form.

Eg

PV~QV~R)IA(PV~QVR)A(~PV~QV~R)
. The maxterm consists of disjunctions in which each variable or its negation,
but not both, appears only once.

The dual of a minterm is called a maxterm.

. Each of the maxterm has the truth value F for exactly one combination of the

. The maxterms are written down by including the variable if its truth value is F

P

- -

1Q (dPv1Q) = (P - 10Q)
T

T

truth values of the variables.
and its negation if its truth value is T.
Eg
Obtain the PDNF of (1P v 1Q)— (P < 1Q)

P Q | 1pPvIQ
T T F
T F T
F T T
F | F T

From the above table

(IPv 1Q—» (P = 1Q) = (PAQ) v (PA Q) v (IPAQ)

< (IPAQ) v (PA 1Q) v (PAQ)

Eg

Obtain PDNF for P— ((P— Q A 1(1Q v 1P))).

Solution

P> (P> QA 1(1QV IP) <P (P> QA ((PAQ))

< P> (P>PAQ))
=P (IPV (P AQ))

< PVv(IPv(PAQ))

< [Pv(PAQ)
<s(PAQVIQ)V(PAQ)

S (PAQV(IPATQ V(P AQ)
S(PATQV(IPAQ) V(P AQ)

Eg
Obtain PCNF for A : (1P— R) A ((Q— P) A (P— Q)).
Solution

A< (PvRA((1Qv P)A (1Pv Q)

< (PvRv (Qa 1Q) A (Pv 1Qv (RA TR)) A (1Pv Qv (RA |R))

< (Pv Qv R)A (Pv Qv R)A (Pv 1Qv R)A (Pv Qv [R)A (1Pv Qv R)A (1Pv Qv |R)
< (Pv Qv R)/\(Pv—|Qv R)/\(Pv—|Q\/—|R)/\(—|PvQ\/ R)/\(—| P\/Q\/—|R)

Theory of Inference

A proof is an argument from hypotheses (assumptions) to a conclusion. Each step of
the argument follows the laws of logic. In mathematics, a statement is not accepted as valid
or correct unless it is accompanied by a proof. This insistence on proof is one of the things
that sets mathematics apart from other subjects.

Writing proofs is difficult; there are no procedures which you can follow which will
guarantee success. The patterns which proofs follow are complicated, and there are a lot of
them. You can't expect to do proofs by following rules, memorizing formulas, or looking at a
few examples in a book.

For this reason, I'll start by discussing logic proofs. Since they are more highly patterned than
most proofs, they are a good place to start. They'll be written in column format, with each
step justified by arule of inference. Most of the rules of inference will come from
tautologies. Since a tautology is a statement which is "always true"”, it makes sense to use
them in drawing conclusions.

Like most proofs, logic proofs usually begin with premises --- statements that you're allowed
to assume. The conclusion is the statement that you need to prove. The idea is to operate on
the premises using rules of inference until you arrive at the conclusion.

Rule of Premises. You may write down a premise at any point in a proof.

The second rule of inference is one that you'll use in most logic proofs. It is sometimes
called modus ponendo ponens, but I'll use a shorter name.

Modus Ponens. If you know P and £ — | you may write down Q.

In the rules of inference, it's understood that symbols like "P" and "Q" may be replaced
by any statements, including compound statements. I'll say more about this later.

Here is a simple proof using modus ponens:

1. F Premise
2. P — () Premise
3. 0@ Modus ponens (1, 2)

I'll write logic proofs in 3 columns. The statements in logic proofs are numbered so that you
can refer to them, and the numbers go in the first column. The actual statements go in the
second column. The third column contains your justification for writing down the statement.

Thus, statements 1 (P) and 2 (£" — ¢) are premises, so the rule of premises allows me to
write them down. Modus ponens says that if I've already written down P and £ — Q .
on any earlier lines, in either order --- then | may write down Q. I did that in line 3, citing the
rule ("Modus ponens”) and the lines (1 and 2) which contained the statements | needed to
apply modus ponens.

As | noted, the "P" and "Q" in the modus ponens rule can actually stand for compound
statements --- they don't have to be "single letters". For example:

—
.

(AW =8} — =~ Premise

2. =0 Premise
3. Av-B Premise
1. =C Modus ponens (1, 3)

There are several things to notice here. First, 4 v = is taking the place of P in the modus
ponens rule, and ~C' is taking the place of Q. That is, 4 =85 and =C are compound
statements which are substituted for "P" and "Q" in modus ponens.

Notice also that the if-then statement (4 ~B) = =C' js listed first and the "if"-part ~C' is
listed second. It doesn't matter which one has been written down first, and long as both pieces
have already been written down, you may apply modus ponens.

Finally, the statement —) didn't take part in the modus ponens step. Perhaps this is part of a
bigger proof, and —L will be used later. The fact that it came between the two modus ponens
pieces doesn't make a difference.

As usual in math, you have to be sure to apply rules exactly. For example, this is not a valid
use of modus ponens:

1. F Premise
2. (Pr@))— R Premise
3. R INVALID modus ponens!

Do you see why? To use modus ponens on the if-then statement (£ @) = £ you need the
“if"-part, which is £ * @ . You only have P, which is just part of the "if"-part. That's not
good enough.

Double Negation. In any statement, you may substitute P for =—4* or == for P (and write
down the new statement).

For example, in this case I'm applying double negation with P replaced by 4 — =C" :

L =[=(4 —=-=C)] Premise
2. A= ~C Double negation (1)

You can also apply double negation "inside" another statement:

. A— --B Premise
2. A= B Double negation (1)

Double negation comes up often enough that, we'll bend the rules and allow it to be used
without doing so as a separate step or mentioning it explicitly. I'll demonstrate this in the
examples for some of the other rules of inference.

Modus Tollens. If you know ~& and £ = @ | you may write down = .

This is a simple example of modus tollens:

1. =@ Premise
2. P — () Premise
3. =F Modus tollens (1, 2)

In the next example, I'm applying modus tollens with P replaced by C and Q replaced
by A = B :

. =(A— B) Premise
2. C—=(A—=B) Premise
3. = Modus tollens (1, 2)

The last example shows how you're allowed to "suppress” double negation steps. Do you see
how this was done? If | wrote the double negation step explicitly, it would look like this:

1. =4 —= B) Premise
2. C—= (A= B Promise
3. C—= (A — B) Double negation {2)
1. =C Modus tollens (1, 3)

When you apply modus tollens to an if-then statement, be sure that you have the negation of
the "then"-part. The following derivation is incorrect:

L. @ Premise
2. P — (@ Premise
3 P INVALID modus tollens!

To use modus tollens, you need ~@ not Q.

This is also incorrect:

. @ Premise
2. P —@Q Premise
3 P INVALID modus tollens!

This looks like modus ponens, but backwards. There is no rule that allows you to do this: The
deduction is invalid.

Disjunctive Syllogism. If you know = and £ ¥ @ | you may write down Q.

Here's a simple example of disjunctive syllogism:

1. =F Premise
2. Pv(@ Premise
3. @ Disjunctive syllogism (1, 2}

In the next example, I'm applying disjunctive syllogism with 4 B replacing P and D
replacing Q in the rule:

1. =(Av H) Premise
2. (Av EByvw D Premise
3. D Disjunctive syllogism (1, 2)

In the next example, notice that P is the same as =~ , so it's the negation of =" .

1. F Premise
2. =PvI({) =+ R} Premise
3. Q=R Disjunctive syllogism (1, 2)

This is another case where I'm skipping a double negation step. Without skipping the step, the
proof would look like this:

1. F Premise

2. =Pv(Q — R) Premise

3. =P Double negation (1)

1. Q= R Disjunctive syllogism (2, 3)

DeMorgan's Law. In any statement, you may substitute:

1. WPV Q) for ~PA-Q

2. 7P A=Q for ~(PVQ)

3. " AQ) for PV Q|

4. 7PV =Q for 2P 1Q)

As usual, after you've substituted, you write down the new statement.

DeMorgan's Law tells you how to distribute = across # or ¥ , or how to factor = out
of ~ or v . To distribute, you attach — to each term, then change ~ to vV or v to ~ . To
factor, you factor — out of each term, then change to ' or ¥ to # .

Note that it only applies (directly) to "or" and "and". We'll see how to negate an "if-then"
later.

Here's DeMorgan applied to an "or" statement:

. =(=FPv =0} Premise
2. Padg) DeMorgan (1)

Notice that a literal application of DeMorgan would have given =~/ Q| changed this
to " A€ once again suppressing the double negation step.

Conditional Disjunction. If you know £ = @ | you may write down =V @
If you know ~¥ V@ you may write down " = @

Here's the first direction:

. =FPv{ Premise
2. P — () Conditional disjunction {1}

And here's the second:

. P—=@Q Premise
2. =Pv () Conditional disjunction {1}

The first direction is key: Conditional disjunction allows you to convert "if-then™" statements
into "or" statements.

We'll see below that biconditional statements can be converted into pairs of conditional
statements. Together with conditional disjunction, this allows us in principle to reduce the
five logical connectives to three (negation, conjunction, disjunction). But DeMorgan allows
us to change conjunctions to disjunctions (or vice versa), so in principle we could do
everything with just "or" and "not". The reason we don't is that it would make our statements
much longer: The use of the other connectives is like shorthand that saves us writing.

In additional, we can solve the problem of negating a conditional that we mentioned earlier.

. =(F =) Premise

2. =(=Pv) Conditional disjunction (1}

3. Pa=g) DeMorgan (2)

We've derived a new rule! Let's write it down.

Negating a Conditional. If you know ™" = @} | you may write down ¥ # =@

If you know £ * =@ you may write down ~{&* = @)

The first direction is more useful than the second. Personally, | tend to forget this rule and
just apply conditional disjunction and DeMorgan when | need to negate a conditional. But

you may use this if you wish.

Constructing a Conjunction. If you know P and Q, you may write down £ @

Think about this to ensure that it makes sense to you. If £/ @ s true, you're saying that P is
true and that Q is true. So on the other hand, you need both P true and Q true in order to say
that £~ @ is true.

Here's an example. Notice that | put the pieces in parentheses to group them after
constructing the conjunction.

1. P& Premise

2. P Premise

3. (P QA (PvQ) Constructing a conjunction (1, 2}
Rule of Syllogism. If you know £ = @ and @ — 1 then you may write down ¥ — 1 .

The Rule of Syllogism says that you can "chain" syllogisms together. For example:
1. P—=(QvR) Premise

2. Qv R)— -5 Premise
3 P -8 Rule of syllogism (1, 2)

Definition of Biconditional. If you know ¥ <* € | you may write down " = € and you
may write down @ = £ _1fyou know £ < @ and @ = ¥ you may write down £’ < @ .

First, a simple example:

1. P+ () Premise
2. () = P Definition of biconditional (1)

By the way, a standard mistake is to apply modus ponens to a biconditional ("« ™). Modus
ponens applies to conditionals ("—). So this isn't valid:

1. P+) Premise

2. () Premise
3. F INVALID - Not modus ponens!

With the same premises, here's what you need to do:

1. P+ (@ Premise

2. @ Premise
3. () = P Definition of biconditional (1)
1. P Modus ponens (2, 3) 0O

Decomposing a Conjunction. If you know £ € | you may write down P and you may
write down Q.

This rule says that you can decompose a conjunction to get the individual pieces:

1. P A}« =) Premise
2. F Decomposing a conjunction (1)
2. () R Decomposing a conjunction (1)

Note that you can't decompose a disjunction!

1. Pv({) Premise
2. F INVALIIN

What's wrong with this? If you know that £ ¥ € is true, you know that one of P or Q must
be true. The problem is that you don't know which one is true, so you can't assume that either
one in particular is true.

On the other hand, it is easy to construct disjunctions.

Constructing a Disjunction. If you know P, and Q is any statement, you may write
down £V @

This says that if you know a statement, you can "or" it with any other statement to construct a
disjunction.

L. F Premise
2. Pv *Calvin sleeps with a night light.” Constructing a disjunction {1}

Notice that it doesn't matter what the other statement is! Once you know that P is true, any
"or" statement with P must be true: An "or" statement is true if at least one of the pieces is
true.

The next two rules are stated for completeness. They are easy enough that, as with double
negation, we'll allow you to use them without a separate step or explicit mention.

Commutativity of Conjunctions. In any statement, you may
substitute £* € for ¢ £ (and write down the new statement).

Commutativity of Disjunctions. In any statement, you may
substitute £* ¥ @ for @ V£ (and write down the new statement).

Here is commutativity for a conjunction:

1. Pa=(Premise
2. =Q AP Commutativity (1)

Here is commutativity for a disjunction:

. (@ —= FP)v H Premise
2. Av(Q — P} Commmtativity (1) 0O

Before | give some examples of logic proofs, I'll explain where the rules of inference come
from. You've probably noticed that the rules of inference correspond to tautologies. In fact,
you can start with tautologies and use a small number of simple inference rules to derive all
the other inference rules.

Three of the simple rules were stated above: The Rule of Premises, Modus Ponens, and
Constructing a Conjunction. Here are two others. We've been using them without mention in
some of our examples if you look closely.

Equivalence You may replace a statement by another that is logically equivalent. (Recall that
P and Q are logically equivalent if and only if £ <+ @ is a tautology.)

For instance, since P and ——{"are logically equivalent, you can replace P
with ==4" or ==4" with P. This is Double Negation. As | mentioned, we're saving time by
not writing out this step.

Substitution. You may take a known tautology and substitute for the simple statements.

This amounts to my remark at the start: In the statement of a rule of inference, the simple
statements ("P", "Q", and so on) may stand for compound statements. "May stand for" is the
same as saying "may be substituted with". We've been doing this without explicit mention.
Here's an example. The Disjunctive Syllogism tautology says

(=P A (PVQ)) = Q.

Suppose you have {44 D) gng (A~ D)V E a5 premises. Here's how you'd apply the
simple inference rules and the Disjunctive Syllogism tautology:

. =AAD) Premise
2. (A IyvO Premise
3. ~AaD)ya{[An D)y C) Constructing a conjunction (1, 3}
4. =ArD)ya{([An D)y) — C Substitution (Disjunctive Syllogism)
. (7 Modus ponens (3, 4)

Notice that | used four of the five simple inference rules: the Rule of Premises, Modus
Ponens, Constructing a Conjunction, and Substitution. In line 4, | used the Disjunctive

Syllogism tautology (£ {7V @}) = @ py substituting
AnD for P oand O for 0.
(Some people use the word "instantiation™ for this kind of substitution.)

The advantage of this approach is that you have only five simple rules of inference. The
disadvantage is that the proofs tend to be longer. With the approach I'll use, Disjunctive
Syllogism is a rule of inference, and the proof is:

1. =(A AL Premise
2. (ArAD)yv O Premise
3. C Disjunctive syllogism (1.2)

Here are some proofs which use the rules of inference. In each case, some premises ---
statements that are assumed to be true --- are given, as well as a statement to prove. A proof
consists of using the rules of inference to produce the statement to prove from the premises.

~A— (C A D)

A—=B
Example. Premises: B
Prove: C.
1. A= B Premise
2. =B Premise
3. =4 Modus tollens (1.2)
1. -A = {(CA D) Premise
h. CAaD Modus ponens (3.4)
G. O Decomposing a conjunction (5)

PrQ

P —~(Qn R)
Example. Premises: 5— R
Prove: =5 .
1. PAaQ Premise
2. F Decomposing a conjunction (1)
3. @) Decomposing a conjunction (1)
1. P —=-Q A R) Premise
5. = AR} Modus ponens (3.4)
G. —=Qv R DeMorgan (5)
7. =H Disjunctive syllogism (3.6)
B. 8§ = R Premise
g, =5 Modus tollens (7.8) O
-(Av B)—= C
-A

Example. Premises: ~C
Prove: B.
I. =(AvEB)—C Premise
2. =(C Premise
3. AwvE Modus tollens (1,2)
1. -A Premise
5. B Disjunetive syllogism (3.4}

Open Statements

An open statement in x associates with the name of each object in a collection, called
the universe of the open statement, a logical statement. Such a logical statement is called
a component of the open statement. It is obtained by replacing the x (or any other variable
letter) in the open statement with the name or symbol of the object.

Eg

Suppose the open statement in x is: "X is greater than 3". The universe is the
collection {1,2,3,4,5} of the first five natural numbers. Replace the x by each of these
numbers to get the five components (or component statements):

lis greater than 3 component is F 1receives an F
21is greater than 3 component is F 2 receives an F
3is greater than 3 component is F 3receives an F
4is greater than 3 component is T 4receives an T
5is greater than 3 component is T 5receives an T

Quantifiers

We need quantifiers to formally express the meaning of the words “all” and “some”.
The two most important quantifiers are: Universal quantifier, “For all”. Symbol:V
Existential quantifier, “There exists”. Symbol:3V¥x P(Xx)asserts that P(x)is true for every x
in the domain. 3Ix P(x)asserts that P(x)is true for some x in the domain. The quantifiers are
said to bind the variable x in these expressions. Variables in the scope of some quantifier are
called bound variables. All other variables in the expression are called free variables. A
propositional function that does not contain any free variables isa proposition and has a truth
value.

The Universal Quantifier

The expression: ¥x P(x), denotes the universal quantification of the atomic formula
P(x). Translated into the English language, the expression is understood as: "For all x,
P(x) holds", "for each x, P(x) holds" or "for every x, P(x) holds". ¥ is called the universal
quantifier, and ¥x means all the objects x in the universe. If this is followed by P(x) then the
meaning is that P(x) is true for every object x in the universe. For example, "All cars have
wheels" could be transformed into the propositional form, ¥x P(x), where:

e P(x) is the predicate denoting: x has wheels, and
« the universe of discourse is only populated by cars.

The Existential Quantifier

The expression: d xP(x), denotes the existential quantification of P(x). Translated into
the English language, the expression could also be understood as: "There exists an x such
that P(x)" or "There is at least one x such that P(x)" dis called the existential quantifier,
and dx means at least one object x in the universe. If this is followed by P(x) then the
meaning is that P(x) is true for at least one object x of the universe. For example, "Someone
loves you" could be transformed into the propositional form, 94 x P(x), where:

e P(x) is the predicate meaning: x loves you,
e The universe of discourse contains (but is not limited to) all living creatures.

Eg
Premises:
a. “It’s not sunny and it’s colder than yesterday”—pAq
b. “We will go swimming only if it’s sunny.”r—p
c. “If we don’t go swimming then we will take canoe trip.”—r—s
d. “If we take a canoe trip, then we will be home by sunset.”’s—t
Conclusion: “We will be home by sunset.”t.
Solution
1) -pAq Premise
2 -p Simplification rule using (1)
3) r—p Premise
4) -r MT using (2) (3)
(5) —r—s Premise
(6) S MP using (4) (5)
(7 s—t Premise
(8) t MP using (6) (7)
This is a valid argument showing that from the premises (a), (b), (c)and (d),
we can prove the conclusion t.
Eg
Suppose P—Q; "P—R; Q—S. Prove that "R—S.
Solution
Q) P—Q Premise
@) -PvQ Logically equivalent to (1)
(€)) -P—R Premise
4) PVR Logically equivalent to (3)
(5) QVR Apply resolution rule to (2)(4)
(6) —“R—Q Logically equivalent to (5)
@) Q—-S Premise

(8) —R—S Apply HS rule to (6)(7).

Theory of Inference for Predicate Calculus

Rule of Inference Name
(i) vxP(x)—p(c) for an arbitrary element c. Universal Specification(US)
(ii) P(c) for an arbitrary element ¢ YXP(x). Universal Generalization(UG)
(iii) IxP(x)—p(c) for some element c. Existential Specification(ES)
(iv) p(c) for some element ¢ IxP(x). Existential Generalization(EG)
Eg

Suppose: all natural numbers are integers; there exists a natural number;
Prove that there exists an integer.

Solution

We can formalize this problem as follows.

N(x): x is a natural number.

[(x): X is an integer.

Premise:Vx(N(x)—I(x)),3x N(x) Need to prove:3x I(x)

1) Ax N(x) Premise

(2 N(c) Apply existential specification rule to (1)
3) Vx(N(x)—1(x)) Premise

4) N(c)—I(c) Apply universal specification rule to (3)
(5) I(c) Apply MP rule to (2)(4)

(6) ax I(x) Apply existential generalization rule to (5)

REVIEW QUESTIONS

1) Define conjunctive normal form.

2) What is meant by Open statement.

3) Obtain PCNF and PDNF of (—p—r1)A(q<>p).

4) Obtain the conjunctive normal form —(pVvq)<(pAq)
5) Obtain PDNF of (PAQ)V(—PAR)V(QAR)

6) What is disjunctive normal? give example.

7) Define PCNF and PDNF.

8) What is universal quantifier ? Give example.

UNIT - 11
GRAPH THEORY

Basic Concepts

Matrix Representation of Graphs
Trees

Spanning Trees

Rooted Trees

YV V V V V V

Binary Trees

GRAPH THEORY

Basic Concepts

Graph

A graph is a pictorial representation of a set of objects where some pairs of objects
are connected by links. The interconnected objects are represented by points termed
as vertices, and the links that connect the vertices are called edges.

Formally, a graph is a pair of sets (V, E), where V is the set of vertices and E is the
set of edges, connecting the pairs of vertices. Take a look at the following graph

5 b

In the above graph,
V={ab,cd e}
E = {ab, ac, bd, cd, de}

Loop

In a graph, if an edge is drawn from vertex to itself, it is called a loop.

Eq
()
oy

In the above graph, V is a vertex for which it has an edge (V, V) forming a loop.

Parallel Edges

In a graph, if a pair of vertices is connected by more than one edge, then those edges
are called parallel edges.

Eg

PN

In the above graph, ‘a’ and ‘b’ are the two vertices which are connected by two edges ‘ab’
and ‘ab’ between them. So it is called as a parallel edge.

Simple Graph

A graph with no loops and no parallel edges is called a simple graph.

e The maximum number of edges possible in a single graph with ‘n’ vertices
is "C2 where "C2 = n(n — 1)/2.

« The number of simple graphs possible with ‘n’ vertices = 2"c, = 2""D/2,
Eg

In the following graph, there are 3 vertices with 3 edges which is maximum
excluding the parallel edges and loops. This can be proved by using the above formulae.

a

b C

The maximum number of edges with n=3 vertices —
"Cz =n(n-1)/2
=3(3-1)/2
=6/2
= 3 edges

Directed Graph

In a directed graph, each edge has a direction.

Eg

g f
In the above graph, we have seven vertices ‘a’, ‘b’, ‘c’, ‘d’, ‘¢’, ‘f”, and ‘g’, and eight
edges ‘ab’, ‘cb’, ‘dc’, ‘ad’, ‘ec’, ‘fe’, ‘gf’, and ‘ga’. As it is a directed graph, each edge bears
an arrow mark that shows its direction. Note that in a directed graph, ‘ab’ is different from
‘ba’.

Deqgree of VVertex

It is the number of vertices adjacent to a vertex V.
Notation — deg(V).
In a simple graph with n number of vertices, the degree of any vertices is —
deg(v)<n-1VVveG

A vertex can form an edge with all other vertices except by itself. So the degree of a
vertex will be up to the number of vertices in the graph minus 1. This 1 is for the self-
vertex as it cannot form a loop by itself. If there is a loop at any of the vertices, then it is not
a Simple Graph.

Degree of vertex can be considered under two cases of graphs —
« Undirected Graph
o Directed Graph

Degree of Vertex in an Undirected Graph

An undirected graph has no directed edges. Consider the following examples.

Eg
Take a look at the following graph —

In the above Undirected Graph,
o deg(a) =2, as there are 2 edges meeting at vertex ‘a’.
o deg(b) =3, as there are 3 edges meeting at vertex ‘b’.

e deg(c) =1, as there is 1 edge formed at vertex ‘c’

e So ‘c’ is a pendent vertex.
e deg(d) =2, as there are 2 edges meeting at vertex ‘d’.
o deg(e) =0, as there are 0 edges formed at vertex ‘e’.

e So ‘e’ is an isolated vertex.

Deqgree of Vertex in a Directed Graph

In a directed graph, each vertex has an indegree and an outdegree.
Indegree of a Graph

o Indegree of vertex V is the number of edges which are coming into the vertex V.

o Notation — deg—(V).
Outdegree of a Graph

o Outdegree of vertex V is the number of edges which are going out from the vertex
V.
« Notation — deg+(V).
Consider the following examples.
Eg

Take a look at the following directed graph. Vertex ‘a’ has two edges, ‘ad’ and
‘ab’, which are going outwards. Hence its outdegree is 2. Similarly, there is an edge
‘ga’, coming towards vertex ‘a’. Hence the indegree of ‘a’ is 1.

E

Y
oty

The indegree and outdegree of other vertices are shown in the following table —

Vertex Indegree Outdegree

d 1 1

e 1 1

f 1 1

g 0 2
Null Graph

A graph having no edges is called a Null Graph.

Eg

In the above graph, there are three vertices named ‘a’, ‘b’, and ‘c’, but there are no
edges among them. Hence it is a Null Graph.

Trivial Graph

A graph with only one vertex is called a Trivial Graph.

Eg

In the above shown graph, there is only one vertex ‘a’ with no other edges. Hence it is a
Trivial graph.

Connected Graph

A graph G is said to be connected if there exists a path between every pair of
vertices. There should be at least one edge for every vertex in the graph. So that we can say
that it is connected to some other vertex at the other side of the edge.

Eg

In the following graph, each vertex has its own edge connected to other edge.
Hence it is a connected graph.

N
N

')

Disconnected Graph

A graph G is disconnected, if it does not contain at least two connected vertices.

Eg
The following graph is an example of a Disconnected Graph, where there are two
components, one with ‘a’, ‘b’, ‘c’, ‘d’ vertices and another with ‘e’, ’f’, ‘g’, ‘h’ vertices.

f

T

N
LN Fat
y N e o
> yo
N / Y
N L
d h

The two components are independent and not connected to each other. Hence it is
called disconnected graph.

Regular Graph

A graph G is said to be regular, if all its vertices have the same degree. In a graph,
if the degree of each vertex is ‘k’, then the graph is called a ‘k-regular graph’.

Eg

In the following graphs, all the vertices have the same degree. So these graphs
are called regular graphs.

In both the graphs, all the vertices have degree 2. They are called 2-Regular Graphs.

Complete Graph

A simple graph with ‘n’ mutual vertices is called a complete graph and it is denoted

by ‘Kr’. In the graph, a vertex should have edges with all other vertices, then it called a
complete graph.

In other words, if a vertex is connected to all other vertices in a graph, then it is called a
complete graph.

Eg

In the following graphs, each vertex in the graph is connected with all the
remaining vertices in the graph except by itself.

Bipartite Graph

A simple graph G = (V, E) with vertex partition V = {V1, V2} is called a bipartite
graph if every edge of E joins a vertex in V1 to a vertex in Va.

In general, a Bipartite graph has two sets of vertices, let us say, V1 and V2, and if an
edge is drawn, it should connect any vertex in set V1 to any vertex in set Vo.

Eg
ec
a '></‘d
bo/ <
Vi V2

In this graph, you can observe two sets of vertices — V1 and V2. Here, two edges named ‘ae’
and ‘bd’ are connecting the vertices of two sets V1 and Va.

Complete Bipartite Graph

A bipartite graph ‘G’, G = (V, E) with partition V = {Vy, V2} is said to be a complete
bipartite graph if every vertex in V1 is connected to every vertex of Vo.

In general, a complete bipartite graph connects each vertex from set V1 to each vertex from
set Vo.

Eg

The following graph is a complete bipartite graph because it has edges
connecting each vertex from set V1 to each vertex from set Vo.

a d

b e

C \ f
Vi V2

If |V1| = m and |V2| = n, then the complete bipartite graph is denoted by K, n.

e Kmnhas (m+n) vertices and (mn) edges.
e Kmnisaregular graph if m=n.

In general, a complete bipartite graph is not a complete graph.

Isomorphic Graphs

Two graphs G; and Gy are said to be isomorphic if —
o Their number of components (vertices and edges) are same.
« Their edge connectivity is retained.

Note

If G1 = G2 then —

IV(Gy)| = [V(Go)|

[E(G1)| = [E(G2)|

Degree sequences of G1 and G are same.

If the vertices {V1, V2, .. VKk} form a cycle of length K in Gy, then the vertices {f(V1),
f(V2),... f(Vk)} should form a cycle of length K in Go.

All the above conditions are necessary for the graphs G: and G to be isomorphic, but not
sufficient to prove that the graphs are isomorphic.

e (G1=Gy)ifand only if (Gi— = G2—) where G1 and G2 are simple graphs.
e (G1=G@y) if the adjacency matrices of G1 and G, are same.

e (G1= Gy) if and only if the corresponding subgraphs of Giand G: (obtained by
deleting some vertices in G1 and their images in graph G») are isomorphic.

Eg
Which of the following graphs are isomorphic?

\ \\\#“ ‘/ /.Y

G1 G2 G3

In the graph Ga, vertex ‘w’ has only degree 3, whereas all the other graph vertices has
degree 2. Hence G3 not isomorphic to G1 or Ga.

Matrix Representation of Graphs

A graph can be represented using Adjacency Matrix way.

Adjacency Matrix

An Adjacency Matrix A[V][V] is a 2D array of size V x V where V is the number
of vertices in a undirected graph. If there is an edge between Vxto Vy then the value of
A[V«][Vy]=1 and A[Vy][Vx]=1, otherwise the value will be zero.

For a directed graph, if there is an edge between Vxto Vy, then the value of A[V«][Vy]=1,
otherwise the value will be zero.

Adjacency Matrix of an Undirected Graph

Let us consider the following undirected graph and construct the adjacency matrix —

Eg
a C
. d
Adjacency matrix of the above undirected graph will be —
a B C D
a 0 1 1 0
b 1 0 1 0

Adjacency Matrix of a Directed Graph

Let us consider the following directed graph and construct its adjacency matrix —

Eq
a c
R d

Adjacency matrix of the above directed graph will be —

a b C D
A 0 1 1 0
B 0 0 1 0
C 0 0 0 1
D 0 0 0 0

Warshall Algorithm

The all pair shortest path algorithm is also known as Floyd-Warshall algorithm is used
to find all pair shortest path problem from a given weighted graph. As a result of this
algorithm, it will generate a matrix, which will represent the minimum distance from any
node to all other nodes in the graph.

Eg

P
N NN WO

|

F =N

|

-
L+
o
(o)
on
_
(=2
(=)

At first the output matrix is same as given cost matrix of the graph. After that the output
matrix will be updated with all vertices k as the intermediate vertex.

The time complexity of this algorithm is O(V3), here V is the number of vertices in the
graph.

Algorithm

Begin
fork:=0ton, do
fori:=0ton, do
forj:=0ton,do
if cost[i,k] + cost[k,j] < cost[i,j], then
cost[i,j] := cost[i,k] + cost[k,j]
done
done
done
display the current cost matrix
End

Tree

A connected acyclic graph is called a tree. In other words, a connected graph with
no cycles is called a tree.

The edges of a tree are known as branches. Elements of trees are called their nodes.
The nodes without child nodes are called leaf nodes.

A tree with ‘n’ vertices has ‘n-1’ edges. If it has one more edge extra than ‘n-1’, then
the extra edge should obviously has to pair up with two vertices which leads to form a cycle.
Then, it becomes a cyclic graph which is a violation for the tree graph.

Eg

The graph shown here is a tree because it has no cycles and it is connected. It has four
vertices and three edges, i.e., for ‘n’ vertices ‘n-1" edges as mentioned in the definition.

s

o

Note — Every tree has at least two vertices of degree one.

Center of a Tree

The center of a tree is a vertex with minimal eccentricity. The eccentricity of a vertex
‘X’ in a tree ‘G’ is the maximum distance between the vertex ‘X’ and any other vertex of the
tree. The maximum eccentricity is the tree diameter. If a tree has only one center, it is called
Central Tree and if a tree has only more than one centers, it is called Bi-central Tree. Every
tree is either central or bi-central.

Stps to find centers of a tree

Step 1 — Remove all the vertices of degree 1 from the given tree and also remove their
incident edges.

Step 2 — Repeat step 1 until either a single vertex or two vertices joined by an edge is left. If
a single vertex is left then it is the center of the tree and if two vertices joined by an edge is
left then it is the bi-center of the tree.

Eg
Find out the center/bi-center of the following tree —
®
) A () e
(O—C—(—(—©
®
Solution

At first, we will remove all vertices of degree 1 and also remove their incident edges and get
the following tree —

Again, we will remove all vertices of degree 1 and also remove their incident edges and get
the following tree —

©,

Finally we got a single vertex ‘c’ and we stop the algorithm. As there is single vertex, this
tree has one center ‘c’ and the tree is a central tree.

Spanning Trees

Let G be a connected graph, then the sub-graph H of G is called a spanning tree of G if —

e Hisatree
e H contains all vertices of G.

A spanning tree T of an undirected graph G is a subgraph that includes all of the vertices of
G.

I

b f
ey /).\ >
/// \\ /// \\ //\\ \
s P My b A N
a(\\ ,/:’\\ }g a.// \\\ \\IE
N 7N b VAN e
NF NS AN A
d e :/ \/
G H

In the above example, G is a connected graph and H is a sub-graph of G.

Clearly, the graph H has no cycles, it is a tree with six edges which is one less than the total
number of vertices. Hence H is the Spanning tree of G.

Minimum Spanning Tree

A spanning tree with assigned weight less than or equal to the weight of every
possible spanning tree of a weighted, connected and undirected graph G, it is called
minimum spanning tree (MST). The weight of a spanning tree is the sum of all the weights
assigned to each edge of the spanning tree.

Eg

Kruskal's Algorithm

Kruskal's algorithm is a greedy algorithm that finds a minimum spanning tree for a
connected weighted graph. It finds a tree of that graph which includes every vertex and the
total weight of all the edges in the tree is less than or equal to every possible spanning tree.

Algorithm

Step 1 — Arrange all the edges of the given graph $G (V,E)$ in ascending order as per their
edge weight.

Step 2 — Choose the smallest weighted edge from the graph and check if it forms a cycle
with the spanning tree formed so far.

Step 3 — If there is no cycle, include this edge to the spanning tree else discard it.

Step 4 — Repeat Step 2 and Step 3 until $(V-1)$ number of edges are left in the spanning
tree.

Eg

Suppose we want to find minimum spanning tree for the following graph G using
Kruskal’s algorithm.

Solution

From the above graph we construct the following table —

Edge Vertex Edge
No. Pair Weight

El (ab) 20
E2 (a ¢) 9
E3 (a, d) 13
E4 (b, c) 1
E5 (b,) 4
E6 (b,) 5
E7 (c,d) 2
E8 (d, e) 3

E9 (d,f) 14

Now we will rearrange the table in ascending order with respect to Edge weight —

Edge Vertex Edge
No. Pair Weight
E4 (b, ¢) 1
E7 (c, d) 2
ES (d, e) 3
E5 (b, €) 4
E6 (b,) 5
E2 (a c) 9
E3 (a, d) 13
E9 d,) 14
El (a, b) 20
© ©
© , B
& @ @ ® © @
@® Q)

After adding vertices After adding edge E4

) =

Nt
. G . E .
> 5 D e @——@
@ (2

After adding edge E7 After adding edge E8

&
9
=

After adding edge E6
(don't add ES since it forms cycle)

After adding edge E2

Since we got all the 5 edges in the last figure, we stop the algorithm and this is the minimal
spanning tree and its total weight is $(1 + 2 + 3 + 5 + 9) = 20$.

Prim's Algorithm

Prim's algorithm, discovered in 1930 by mathematicians, VVojtech Jarnik and Robert
C. Prim, is a greedy algorithm that finds a minimum spanning tree for a connected weighted
graph. It finds a tree of that graph which includes every vertex and the total weight of all the
edges in the tree is less than or equal to every possible spanning tree. Prim’s algorithm is
faster on dense graphs.

Algorithm

« Initialize the minimal spanning tree with a single vertex, randomly chosen from the
graph.

o Repeat steps 3 and 4 until all the vertices are included in the tree.

o Select an edge that connects the tree with a vertex not yet in the tree, so that the
weight of the edge is minimal and inclusion of the edge does not form a cycle.

o Add the selected edge and the vertex that it connects to the tree.
Eg

Suppose we want to find minimum spanning tree for the following graph G using
Prim’s algorithm.

Solution

Here we start with the vertex ‘a’ and proceed.

&

€@
& B @ |
&)

No vertices added

&
®@/®®

B

=)
G

After adding vertex 'c”

After adding vertex 'b”

o o
After adding vertex 'd” After adding vertex e’

After adding vertex 'f’

This is the minimal spanning tree and its total weight is $(1 + 2 + 3 + 5 + 9) = 208.

Shortest Path Problem

Dijkstra’s Algorithm

Dijkstra’s algorithm solves the single-source shortest-paths problem on a directed
weighted graph G = (V, E), where all the edges are non-negative (i.e., w(u, v) > 0 for each
edge (u, v) € E).

In the following algorithm, we will use one function Extract-Min(), which extracts the node
with the smallest key.

Eg

Let us consider vertex 1and 9as the start and destination vertex respectively.
Initially, all the vertices except the start vertex are marked by oo and the start vertex is
marked by 0.

Stepl Step2 Step3 Stepd Step5 Step6 Step7 Step8

Vertex Initial Vi Vs VA V4 Vs V7 Vs Vs

3 0 2 2 2 2 2 2 2 2
4 0 0 0 7 7 7 7 7 7
5 e 0 0 11 9 9 9 9 9
6 o 0 0 0 © 17 17 16 16
7 e 0 11 11 11 11 11 11 11
8 0 0 o0 0 00 16 13 13 13
9 0 0 0 0 0 0 0 0 20

Hence, the minimum distance of vertex 9 from vertex 1 is 20. And the path is
1-3—->7—->8—>6—>9

This path is determined based on predecessor information.

7
I
5 ,.. . . 4
S o3 2 TN A
e .l Y i 7 | E
@ - . @
’ | o~ ™, 5 | 5 \\ \

Rooted Tree

A rooted tree G is a connected acyclic graph with a special node that is called the
root of the tree and every edge directly or indirectly originates from the root. An ordered
rooted tree is a rooted tree where the children of each internal vertex are ordered. If every
internal vertex of a rooted tree has not more than m children, it is called an m-ary tree. If
every internal vertex of a rooted tree has exactly m children, it is called a full m-ary tree. If
$m = 28, the rooted tree is called a binary tree.

Eqg

Root Node

Internal
Node

Internal
Node

Internal
Node

Leaf Leaf Leaf Leaf Leaf Leaf
Node Node Node Node Node Node

Binary Search Tree

Binary Search tree is a binary tree which satisfies the following property —

e ‘X’ in left sub-tree of vertex V, Value(X) \le Value (V)

e Y’ in right sub-tree of vertex V, Value(Y) \ge Value (V)
So, the value of all the vertices of the left sub-tree of an internal node ‘V’ are less than or
equal to “V” and the value of all the vertices of the right sub-tree of the internal node “V’ are
greater than or equal to “V’. The number of links from the root node to the deepest node is
the height of the Binary Search Tree.

Eqg

Traversing a Binary Tree

Traversal is a process to visit all the nodes of a tree and may print their values too.
Because, all nodes are connected via edges (links) we always start from the root (head)
node. That is, we cannot randomly access a node in a tree. There are three ways which we
use to traverse a tree —

e In-order Traversal
e Pre-order Traversal
e Post-order Traversal

Generally, we traverse a tree to search or locate a given item or key in the tree or to print all
the values it contains.

In-order Traversal

In this traversal method, the left subtree is visited first, then the root and later the right sub-
tree. We should always remember that every node may represent a subtree itself.

If a binary tree is traversed in-order, the output will produce sorted key values in an
ascending order.

Root

N
nA

Left Subtree Right Subtree

We start from A, and following in-order traversal, we move to its left subtree B. B is also

traversed in-order. The process goes on until all the nodes are visited. The output of inorder
traversal of this tree will be —

D—->B—->E—->A—->F—->C—-G
Algorithm
Until all nodes are traversed —
Step 1 — Recursively traverse left subtree.
Step 2 — Visit root node.

Step 3 — Recursively traverse right subtree.

Pre-order Traversal

In this traversal method, the root node is visited first, then the left subtree and finally
the right subtree.

Root

& 4
o ». & .

Left Subtree Right Subtree

We start from A, and following pre-order traversal, we first visit A itself and then move to
its left subtree B. B is also traversed pre-order. The process goes on until all the nodes are
visited. The output of pre-order traversal of this tree will be —

A—-B—-D—>E—->C—->F—>G

Algorithm

Until all nodes are traversed —

Step 1 — Visit root node.

Step 2 — Recursively traverse left subtree.
Step 3 — Recursively traverse right subtree.

Post-order Traversal

In this traversal method, the root node is visited last, hence the name. First we traverse the
left subtree, then the right subtree and finally the root node.

Root

B c
1 NG 1E 22
Left Subtree Right Subtree

We start from A, and following Post-order traversal, we first visit the left subtree B. B is
also traversed post-order. The process goes on until all the nodes are visited. The output of
post-order traversal of this tree will be —

D—-FE—-B—->F—->G->C—A

Algorithm

Until all nodes are traversed —

Step 1 — Recursively traverse left subtree.
Step 2 — Recursively traverse right subtree.
Step 3 — Visit root node.

REVIEW QUESTIONS

1) Define Binary Tree.

2) Define indegree and outdegree.

3) Explain the representation of trees.

4) Explain in detail about matrix representation of graphs with example.
5) Define spanning tree.

6) Define Rooted tree.

7) Explain traversal of binary tree.

8) What is meant by complete asymmetric graph.

UNIT — IV
LINEAR PROGRAMMING PROBLEM(LPP)
> Mathematical Formulation

Graphical Solution

Slack and Surplus Variable
Simplex Method

Two Phase Method

vV V V VY

LINEAR PROGRAMMING PROBLEM(LPP)

Decision Variables and their Relationships

The decision variable refers to any candidate (person, service, projects, jobs, tasks)
competing with other decision variables for limited resources. These variables are usually
interrelated in terms of utilization of resources and need simultaneous solutions, i.e., the

relationship among these variables should be linear.

Objective Function

The Linear Programming Problem must have a well defined objective function to
optimize the results. For instance, minimization of cost or maximization of profits. It should
be expressed as linear function of decision variables (Z = X1 + X2, where Z represents the
objective, i.e., minimization/maximization, X1 and X2 are the decision variables directly
affecting the Z value).

Constraints

There would be limitations on resources which are to be allocated among various
competing activities. These must be capable of being expressed as linear equalities or
inequalities in terms of decision variables.

Non-Negativity Restrictions

All variables must assume non-negative values. If any of the variable is unrestricted
in sign, a tool can be employed which will enforce the negativity without changing the
original information of a problem.

Mathematical Formulation of Linear Programming Problems(LPP)

Steps for formulating LPP,
1. Identify the nature of the problem (maximization/minimization problem).
2. ldentify the number of variables to establish the objective function.

3. Formulate the constraints.

4. Develop non-negativity constraints.

Eg
A firm manufactures 2 types of products A & B and sells them at a profit or ~ 2 on

type A & ~ 3 on type B. Each product is processed on 2 machines G & H. Type a requiresl

minute of processing time on G and 2 minutes on H. Type B requires one minute on G &1

minute on H. The machine G is available for not more than 6 hrs. 40 mins. while machine H

is available for 10 hrs. during any working day. Formulate the problem as LPP.

Solution

Let, x1 be the no. of products of type A.
X2 be the no. of products of type B.

Since the profit on type A is ~ 2 per product, 2x1 will be the profit on selling X1 units
of type A. Similarly 3x2 will be the profit on selling x2 units of type B.

Hence the objective function will be,Maximize ‘Z’ = 2x1 + 3X is subject to
constraints.

Since machine ‘G’ takes one minute on ‘A’ and one minute on ‘B’, the total number
of minutes required is given by x1 + x2. Similarly, on machine ‘H’ 2x1 + x2. But ‘G’ is not
available for more than 400 minutes. Therefore, x1 + x2< 400 and H is not available for more
than 600 minutes, therefore, 2x1 + x2 <600 and x1, x2, >0, i.e.,

X1 + X2<400 (Time availability constraints)
2x1 + x2<600
x1, x2>0 (Non-negativity constraints)

Graphical Solutions under Linear Programming

Steps
1. Consider each inequality constraint as an equation.
2. Plot each equation on the graph as each will geometrically represent a straight line.
3. Plot the feasible region, every point on the line will satisfy the equation on the line.
4. If the inequality constraint corresponding to that line is less than or equal to, then
the region below the line lying in the 1st quadrant (as shown in above graph) is shaded (due
to non-negativity of variables); for the inequality constraint with greater than or equal to sign,
the region above the line in the 1st quadrant is shaded. The points lying in common region

will satisfy all the constraints simultaneously. Hence, it is called feasible region.

5. ldentify the co-ordinates of the corner points.

6. Find the ‘Z’ value by substituting the co-ordinates of corner points to the objective
functions.

Eg
Maximize ‘Z’ =3x1 + 5x2
(Subject to constraints)
X1 + 2X2 < 2,000
X1+ X2< 1,500
X2 < 600
x1, x2<0

Solution

Step 1: Convert the inequalities into equalities and find the divisible of the equalities.

Equation X1 X2
x1+2x2=2,000 2,000 1,000
x1+ x2=1,500 1,500 1,500
x2 =600 - 600

Step 2: Fix up the graphic scale.
Maximum points =2,000
Minimum points =600
2 cms =500 points

Step 3: Graph the data

Scale: 2 cms. = 500 points
Max. z = 3x, + 5x,
2000

1500 [N+

o Feasible region
1000 | NSt / ‘OABCD’
&3 90%
C X, < 600
o) 2=
500 B
A

o 500 1000 1500 2000 X
X,

Step 4: Find the co-ordinates of the corner points

Corner Points X1 X2
o 0 0
A 1,500 0
B 1,000 500
C 800 600
D 0 600
At ‘B’: x1 + 2x2 =2,000 Q)
X1 + X2 =1,500 2
X2 =500
Notes Put X, = 500 in eq. (1),
X, +2(500) = 2,000
Therefore X, = 2,000 - 1,000
Therefore X, = 1,000
At ‘Cix1+2xp=2000 Ll (1)
x2=600 . (2)
Put x2 = 600 ineq. (1),

X1 +2(600) = 2,000
X1 = 2,000 - 1,200
Therefore X1 = 800

Step 5: Substitute the co-ordinates of corner points into the objective

function. Maximize ‘Z’ =3x1 +5x2
At‘O’,Z=0+0=0
At“A’, Z=3(1,500) + 5 (0) = 4,500
At ‘B, Z =3 (1,000) + 5 (500) = 5,500
At “C’, Z =3 (800) + 5 (600) = 5,400
At“C’, Z=3(0) + 5 (600) = 3,000

Result

A maximum profit of * 5,500 can be earned by producing 1,000 dolls of basic version
and 500 dolls of deluxe version.

Slack and Surplus Variables

To convert an equation of the form
ailX1 + aizx2 + -+ + ainXn < bi to standard form
we introduce a slack variable y; to obtain
ailX1 + aizxz2t---+ainXnt Yi = bi.
To convert an equation of the form
aiiX1 + aizx2 + -+ + ainXn > bi to standard form
we introduce a surplus variable yi to obtain
ailX1 + aizXz+---+ainXn- Yi = bi.

Eg
Maximise ‘Z" = 4x1 + 3x2
[Subject to constraints]
2x1 +x2 <30
x1+x2>24
Where, x1,x2>0 [Non-negativity constraints]

Standard Form
Convert the inequalities into equalities adding slack and surplus variables.
Maximise ‘Z’ = 4x1 + 3x2
[Subject to constraints]
2x1 +x2 +x3 =230
x1+x2-x4= 24
Where, x1, x2, x3,x4>0 [Non-negativity
constraints]

Simplex Method of Linear Programming

Steps:

i) Convert the inequalities into equalities by adding slack variables, surplus
variables or artificial variables, as the case may be.

i) Identify the coefficient of equalities and put them into a matrix form AX = B

Where "A" represents a matrix of coefficient, "X" represents a vector of unknown
quantities and B represents a vector of constants, leads to AX = B [This is
according to system of equations].

iii) Tabulate the data into the first iteration of Simplex Method.

Table 3.1: Specimen

Basic (BV) Cep Xo Y1 Yz 51 52 Minimum Ratio
Variable Keivii; Y= 0
51
Sz
Z
Cj
Z- G

@) Cj is the coefficient of unknown quantities in the objective function.
Zj = LICBiYij (Multiples and additions of coefficients in the table, i.e., CB1 x Y11 + CB2
X

Y12)

() lIdentify the Key or Pivotal column with the minimum element of Zj - Cj
denoted as 'KC' throughout to the problems in the chapter.

() Find the 'Minimum Ratio' i.e., XBj/Yjj.

() ldentify the key row with the minimum element in a minimum ratio column.
Key row is denoted as 'KP".

(e) ldentify the key element at the intersecting point of key column and key row,
which is put into a box [throughout to the problems in the chapter.

Iv) Reinstate the entries to the next iteration of the simplex method.

a) The pivotal or key row is to be adjusted by making the key element as '1'
and dividing the other elements in the row by the same number.

b) The key column must be adjusted such that the other elements other than
key elements should be made zero.

c) The same multiple should be used to other elements in the row to adjust the rest of the
elements. But, the adjusted key row elements should be used for deducting out of the earlier
iteration row

d) The same iteration is continued until the values of Zj — Cj become either '0' or positive.

v) Find the 'Z' value given by Cg, XB.

Eg
Solve by Simplex method.

Maximise 2= 5%+ 3x, [Subject to constraints]

X, X2 2
5x, +2x,= 10
3x, +8x,< 12

Where, X, X,z 0 [Non-negativity constraints|

Solution:
Step 1: Conversion of inequalities into equalities adding slack variables
X Fx, +x,= 2
5x +2x, +x,= 10
3x, +8x, +x,= 12

Where, x,, x, and x, are slack variables.

Step 2: Fit the data into the matrix form AX = B

Y, Y, S, S, S, X,
1% %X X X X X, 2
A=1T 1 1 0 0| X=[x,|=B=[10
|5 2 0 1 0 X, 12
(3 8 0 0 1 X
Step 3: Fit the data into first iteration of Simplex Method
BV Cr X Y Yz 51 Sa2 S Min. Ratio
5: 0 2 1 1 0 0 2/1=2(KR) —»
5 0 10 5 2 1 0 10/6=2
Sa 0 12 3 3 0 0 1 12/3=4
Z 0 0
G 5 3
7-G 5 3
(T kQ)
Therefore, Z= C X,
= (0x2) +(0x10) + (0x12)

0

Step 4: Fit the data into second iteration of Simplex Method.

BV Cn Xo Y1 Y2 Sq Sz Ss Min. Ratio
Ys 5 2/1=2 1/1=1 1/1=1 - - | - -
S 0 10-2(5)=0 5-1(5)=0 2-1(5)=-3 - - - -
S5 0 | 12-203)=6 3-1(3)=0 8-1(3)= 5 - -] - -
7 5 5
G 5 3
Z - G 0 2
Therefore, Z= C, X,

= (5x2)+(0x0)+(0x06)
Therefore, Z= 10

Therefore, Maximum value of "2’ = 10

Two Phase Method

In the preceding section we observed that it was frequently necessary to add artificial
variables to the constraints to obtain an initial basic feasible solution to an L.P. problem. If the
problem is to be solved, the artificial variables must be driven to zero. The two-phase method is
another method to handle these artificial variables. Here the L.P. problem is solved in two phases.

Phase |

In this phase we find an i.b.fs. to the original problem. For this all artificial variables are to
be driven to zero. To do this an artificial objective function (w) is created which is the sum of all
the artificial variables. This new objective function is then minimized, subject to the constraints of
the given (original) problem, using the simplex method. At the end of phase I, three cases arise:

1. If the minimum value of w > 0, and at least one artificial variable appears in the basis
at a positive level, then the given problem has no feasible solution and the procedure terminates.

2. If the minimum value of w = 0, and no artificial variable appears in the basis, then a
basic feasible solution to the given problem 1s obtained. The artificial variable column (s) 1s/are
deleted for phase II computations.

3. If the minimum value of w = 0 and one or more artificial variables appear in the basis
at zero level, then a feasible solution to the original problem is obtained. However, we must take
care of this artificial variable and see that it never becomes positive during phase II computations.
Zero cost coefficient 1s assigned to this artificial variable and it 1s retained in the initial table of
phase II. If this variable remains in the basis at zero level in all phase II computations, there 1s no
problem. However, the problem arises if it becomes positive in some iteration. In such a case, a
slightly different approach is adopted in selecting the outgoing variable. The lowest non-negative
replacement ratio criterion 1s not adopted to find the outgoing variable. Artificial variable (or one
of the artificial variables if there are more than one) is selected as the outgoing variable. The
simplex method can then be applied as usual to obtain the optimal basic feasible solution to the
given L.P. problem.

Phase Il

When phase I results in (2) or (3), we go on to phase II to find optimum solution to the given
L.P. problem. The basic feasible solution found at the end of phase I is now used as a starting
solution for the original problem. In other words, the final table of phase I becomes the starting
table of phase Il in which the artificial (auxiliary) objective function is replaced by the original
objective function. The simplex method 1s then applied to arrive at the optimum solution. Artificial
variables which do not appear in the basis may be deleted.

Remarks: 1. In phase I, the iterations are stopped as soon as the value of the new (artificial)
objective function becomes zero because this 1s its minimum value. There 1s no need to continue
till the optimality 1is reached if this value becomes zero earlier than that.

2. Note that the new objective function is always of minimization type regardless of whether
the original problem is of maximization or minimization type.

Eg
Use the two-phase simplex method to
maximize Z = 5x; + 3x,,
subject to the constraints 2x; tx; =1,
x; +dx, = 6,
X, X5, 2 0.
Solution
Phase I

It consists of the following steps:

Step 1. Set up the Problem in the Standard Form

The original objective function Z = 5x| + 3x, is temporarily set aside during the phase [
solution. The given constraints, after the introduction of slack, surplus and artificial variables take
the form :

2x1+x2+sl =],
xptdxy -5, A =6,
Xy, Xo, 51, 89, A| = 0.

The new objective function 1s

minimize w = A,

Now the simplex method requires that a variable which appears in one equation must appear
in all the equations. This is done by proper placement of a zero coefficient. Thus the problem for
phase I in standard form becomes

minimize w = Ox; + Ox, + Os; + Os; + A,

subject to

2%, +xy+s5; +0s, +0A, =1,
x, +4x, +05) — 5, + A =6,
X, Xo, 8y, 8o, A] = 0.

Step 2. Find an Initial Basic Feasible Solution

Substituting x, = x, = s, = 0 in the constraint equations we get s, = 1, A, = 6 as the initial

basic feasible solution.

G 0 0 0 |
Cg Basis X 82 8 A b &}
0 8) (1 0 1 0 1 | —
1 A 4 -1 0 | G 32
Z‘.." = ZCB ﬂ';j' "'I' -1 (} 1 ("l
ci~Z; —4] 0 0
T Initial b.f.s. for phase I problem
Step 3. Perform Optimality Test
Since ¢;~Z, 1s negative under some columns (minimization problem), table is not

optimal.

Step 4. lterate Towards an Optimal Solution
X, 18 incoming variable, s, is outgoing variable and (1) is the key element. In

table . 8y is replaced by x,.

¢
Cp Basis
0 Xa
1 Ay
Z; = Zcpay;
¢,

2

=
[

=

d
)
=
=

2 0 1 0 1
-7 0 = | -4 1 2
-7 0 -1 -4 1 2
7 0 1 4 0

Optimal basic feasible solution for phase I problem

" ¢~Z£; 18 either positive or zero under all columns, an optimal basic feasible solution to
the auxiliary L.P.P. has been obtained.

However, since w = A = 2 (> 0) and artificial variable A, appears in the basis at a positive
level (A, = 2), the given problem does not possess a feasible solution and the procedure stops.

REVIEW QUESTIONS

1)
2)
3)
4)
5)
6)

Define slack and surplus variable.

What is optimum basic feasible solution.
Write the algorithm for graphical method.
Write mathematical formulation of LPP.
Write algorithm for Simplex method.

Define non negativity constraints.

UNIT -V
TRANSPORTATION PROBLEM(TP)

Transportation Table

Solution of Transportation Problem
Testing for Optimality

Assignment Problem

The Assignment Method

Special Cases in Assignment Problems

V V V V VYV V

TRANSPORTATION PROBLEM(TP)

Transportation problem is a particular class of linear programming, which is associated with
day-to-day activities in our real life and mainly deals with logistics. It helps in solving problems on
distribution and transportation of resources from one place to another. The goods are transported from
a set of sources (e.g., factory) to a set of destinations (e.g., warehouse) to meet the specific
requirements. In other words, transportation problems deal with the transportation of a product
manufactured at different plants (supply origins) to a number of different warehouses (demand
destinations). The objective is to satisfy the demand at destinations from the supply constraints at the
minimum transportation cost possible. To achieve this objective, we must know the quantity of
available supplies and the quantities demanded.

Mathematical Formulation of TP

The transportation problem applies to situations where a single commodity is to be transported
from various sources of supply (origins) to various demands (destinations).

Let there be m sources of supply S, S, ..o, S_ having a (i=1, 2,....m) units of supplies
respectively to be transported among n destinations D, D, D_ with bj
(j = 1,2....n) units of requirements respectively. Let C;be the cost for shipping one unit of the
commodity from source i, to destination j for each route. If x, represents the units shipped per
route from source i, to destination j, then the problem is to determine the transportation schedule

which minimizes the total transportation cost of satistying supply and demand conditions.

The transportation problem can be stated mathematically as a linear programming problem as
below:

Minimize Z=

Subject to constraints,
Il

Z i =a i=12,....m (supply constraints)
i=I '

n
Z X; =b j=12,....m (demand constraints)
1=

and X; 50 for all 1=1,2,....mand,

j=12,....m

Transportation Table

The Transportation problem can also be represented in a tabular form

Let ¢ be the cost of transporting a unit of the product from i* origin to j* destination.
a be the quantity of the commodity available at source i,
b, be the quantity of the commodity needed at destination j, and

x, be the quantity transported from i* source to j* destination

Tabular Representation of Transportation Model
To Supply
Dy Dz D3
From a
1 Cn Cn Cin a
Xu X1z
Ca Caz
Sz o Com dz
Xau Xz
Cn‘[- Cm.'!
Sm Con am
Xm1 Xm2
by by b: by >a,=>Db,
Demand it =1
a,=>b

i=1 =1

It the total supplv is equal to total demand, then the eiven transportation problem is a balanced
One.

Initial Basic Feasible Solution

Step 1: Formulate the Problem

Formulate the given problem and set up in a matrix form. Check whether the problem is a
balanced or unbalanced transportation problem. If unbalanced, add dummy source (row) or
dummy destination (column) as required.

Step 2: Obtain the Initial Feasible Solution

The initial feasible solution can be obtained by any of the following three methods.
1. Northwest Corner Method (NWC)

2. Row and Column Minima Method (RCMM)

3. Vogel's Approximation Method (VAM)

The transportation cost of the initial basic feasible solution through Vogel's approximation
method, VAM will be the least when compared to the other two methods which gives the value
nearer to the optimal solution or optimal solution itself. Algorithms for all the three methods to
find the initial basic feasible solution are given.

Northwest Corner Method(NWC)

1. Select the North-west (ie., upper lett) corner cell of the table and allocate the maximum
possible units between the supply and demand requirements. During allocation, the
transportation cost is completely discarded (not taken into consideration).

2. Delete that row or column which has no values (fully exhausted) for supply or demand.

3. Now, with the new reduced table, again select the North-west corner cell and allocate the
available values.

4. Repeat steps (2) and (3) until all the supply and demand values are zero.

5. Obtain the initial basic feasible solution.

=

Find Initial Basic Feasible Solution to the following TP by NWC method.

Retail shops
Factories 1 2 3 4 Supply
1 3 5 7 6 50
2 2 5 8 2 75
3 3 6 9 2 25
Demand 20 20 50 60
Solution:
Retail shops
Factories 1 2 3 4 Supply
1 320 520 710 6 50
2 2 5 g4 2% =
3 3 6 9 25 25
Demand 20 20 50 60

As under the process of NWC method, we allocate x,, = 20. Now demand for the first column is
satisfied, therefore, eliminate that colummn.

Proceeding in this way, we observe that

x,=20,x,=10,x,=40,x,=35x,=2

24 34

5

Delete the row if supply is exhausted.

Delete the column if demand is satisfied.

Here, number of retail shops (n) = 4, and

Number of factories (m) = 3

Number of basic variables=m+n-1=3+4-1=6.
Initial basic feasible solution:

20x3+20x5+10x7+40x8+35x2+25x2=670

Row and Column Minima Method (RCMM)

1. Select the smallest transportation cost cell available in the entire table and allocate the
supply and demand.

2. Delete that row/column which has exhausted. The deleted row/column must not be

considered for further allocation.

3. Again select the smallest cost cell in the existing table and allocate. (Note: In case, if there
are more than one smallest costs, select the cells where maximum allocation can be made)

4. Obtain the initial basic feasible solution.

=

Find Initial Basic Feasible Solution to the following TP by RCMM method.

Retail shops
Factories 1 2 3 4 Supply
1 3 5 7 6 50
2 2 3 8 2 75
3 3 6 9 2 25
Demand 20 20 50 60
Applying the least cost method-
Retail shops
Factories 1 2 3 4 Supply
1 3 Hu 730 6 =4
2 20 5 8 2% 7=
3 3 6 920 25 25
Demand 20 20 50 60

We observe that ¢,, = 2, which is the minimum transportation cost. So, x,, = 20.

Proceeding in this way, we observe that , = 20, x, =30, x,, = 20.

34

-1=6.

; =FC o =F

X,, = 55, x 5, X,

Number of basic variables=m +n-1=3+4

The initial basic feasible solution:
=20x2+55x2+5x2+20x5+30x7+20x%x9

= 650.

VYogel’s Approximation Method (VAM)

1. Calculate penalties for each row and column by taking the difference between the smallest
cost and next highest cost available in that row/column. It there are two smallest costs,
then the penalty is zero.

2. Select the row/column, which has the largest penalty and make allocation in the cell
having the least cost in the selected row/column. If two or more equal penalties exist,
select one where a row/column contains minimum unit cost. If there is again a tie, select
one where maximum allocation can be made.

3. Delete the row/column, which has satistied the supply and demand.
4. Repeat steps (1) and (2) until the entire supply and demands are satisfied.
5. Obtain the initial basic feasible solution.
Eg
Find Initial Basic Feasible Solution to the following TP by VAM method.
Destination
Origin 1 2 3 4 Supply
1 20 22 17 4 120
2 24 37 9 7 75
3 34 37 20 15 25
Demand 60 40 30 110 240
Solution:

Solving the problem through Vogel's Approximation Method, we get the Table 5.15

Destination
Origin 1 2 3 4 Supply Penalty
1 20 2240 17 4 20- 80 13
2 24 37 9 7 70 2
3 32 37 20 15 50 5
Demand 60 44 30 110 240
Penalty 4 15 8 3

The highest penalty occurs in the second column. The minimum ¢, in this column is ¢, (i.e., 22).

Hence, x -

Now again calculate the penalty.

= 40 and the second column is eliminated.

Origin 1 2 3 4 Supply Penalty
1 20 2240 17 480 20 13
2 24 37 9 7 70 2
3 32 37 20 15 30 3
Demand 60 40 30 110 240
Penalty 4 8 3
The highest penalty occurs in the first row. The minimum cij in this row is ¢ , (i.e., 4). So x , = 80

and the first row is eliminated.

Final table:

Now assuming that you can calculate the values yourself, we reach the final table as in

Table 5.20

Destination

Penalty

Penalty \

X3 15 I I I I .

The initial basic feasible solution:

=2x40+4=80+24x10+9=30+7=30+32=50

=3520

Test for Optimality

Stepping Stone Method

It is a method for computing optimum solution of a transportation problem.

Steps Involved:

Step 1:

Step 2:

Step 3:

Step 4:

Step 5:

Step 6:

Step 7:

Step 8:

Step 9:

Determine an initial basic feasible solution using any one of the following:
(a) North West Cormer Rule

(b) Matrix Minimum Method

(c0 Vogel Approximation Method

Make sure that the number of occupied cells is exactly equal to m+n-1, where m is the
number of rows and n is the number of columns.

Select an unoccupied cell.

Beginning at this cell, trace a closed path using the most direct route through at least
three occupied cells used in a solution and then back to the original occupied cell and
moving with only horizontal and vertical moves. The cells at the turning points are
called “Stepping Stones” on the path.

Assign plus (+) and minus (-) signs alternatively on each corner cell of the closed path
just traced, starting with the plus sign at unoccupied cell to be evaluated.

Compute the net change in the cost along the closed path by adding together the unit
cost figm‘es found in each cell containing a plus sign and then subtracting the unit costs
in each square containing the minus sign.

Check the sign of each of the net changes. If all the net changes computed are greater than
or equal to zero, an optimum solution has been reached. If not, it is possible to improve
the current solution and decrease the total transportation cost.

Select the unoccupied cell having the most negative net cost change and determine the
maximum number of units that can be assigned to a cell marked with a minus sign on the
closed path corresponding to this cell. Add this number to the unoccupied cell and to all
other cells on the path marked with a plus sign. Subtract this number from cells on the
closed path marked with a minus sign.

Repeat the procedure until you get an optimum solution

=

Consider the Following TP. Find the Optimum solution.

Factory
A
B
C

Requirement

D

[S¥]

3
400

E
6
5

9

450

F G Capacity

8 6 700

2 5 400

6 5 600
350 500 1700

Solution: First, we find out an initial basic feasible solution by Matrix Minimum Method

Factory
A
B
C

D
4

Requirement 400

E

6450

5]]

450

F

8

2350

6

3

50

G Capacity
6>° 700

5 400
520 600
500 1700

Here, m + n - 1 = 6. So the solution is not degenerate.

The cell AD (4) is empty so allocate one unit to it. Now draw a closed path from AD.

The increase in the transportation cost per unit quantity of reallocationis +4- 6 +5- 3

This indicates that every unit allocated to route AD will neither increase nor decrease the

Factory
A
B
C

Requirement

D
g1
350
3349

400

E

6450

5

9
450

F
8

2550

3

6
50

G Capacity
624 700

5 400
51 600
500 1700

transportation cost. Thus, such a reallocation is unnecessary.

Choose another unoccupied cell. The cell BE is empty so allocate one unit to it.

The increase in the transportation cost per unit quantity of reallocationis +5- 6 +6 - 5+ 3 -

3=0

This indicates that every unit allocated to route BE will neither increase nor decrease the

Factory D
A 4
B 3-19
C 3551

Requirement 400

E

450

G Capacity
6*! 700

5 400
527 600
500 1700

transportation cost. Thus, such a reallocation is unnecessary.

0.

The allocations for other unoccupied cells are:

Unoccupiedcells Increase in cost per unit of reallocation = Remarks

CE +9-6+6-5=4 Cost Increases
CF +6-3+3-2=4 Cost Increases
AF +8-6+5-3+3-2=5 Cost Increases
BG +5-5+3-3=0 Neither increase nor decrease

Since all the values of unoccupied cells are greater than or equal to zero, the solution obtained
is optimum.

Minimum transportation cost is:

6 %450 + 6 x 250 + 3 x 250 + 2 x 250 + 3 x 350 + 5 x 250 =% 7350

Assignment Problem

L.P is used in solving problems faced in assigning the ‘equal number of jobs to equal number of
workers so as to maximise profit or minimize cost’. Hence it is called one-to-one assignment.
Say tor instance, there are ‘n’ jobs to be performed and 'n” number of persons are available for
doing these jobs and each person can do one job at a time though with varying degree of
efficiency. Say let Cij be the total cost : here C=cost, I = individual and j = job. So, a problem arises

as to which worker is to be assigned which job as to minimize the total job cost. The simple
matrix would go like this:

Cost Matrix Job
1 2] n
Individual 1 Cu Cia Cy Cin
2 Cn Cn Cy Con
i Ca Co Cy Cin
n Cn1 Cn2 Cu;j Con

Although these types of problems could be solved by using transportation algorithm but a
more efficient method called the assignment algorithm is used to solve such typical problems.

C,; — indicates the cost of assigning i"job to j* individual
X, — (veference index) which indicates whether i™ job is assigned to j* person or not.
X, =1if i job are assigned to j™ person.

0 if i"* job are assigned to j* person.

Consider the example:

There are 6 persons and 6 jobs to be allotted.

Let the assignment of jobs be as shown below:

1 2

|
p| O

3
A A

FCD

gl

The assignments

Here,

X, = 1 since the first job is allotted to second person.
Similarly, X, =X, =%, =x, =0, and
X31 - xJeb - XS-; - Xbi - -'I'
G
Sum of all jobs assigned to first person = Z X, =1

arel >2,2 53,3 51,456,554, 6 5.

x,, = 0 since the first job is not allotted to first person.

=1

Since only one job can be allotted to a person.

6
E X i Sum of all persons with first job = 1, since a job can be assigned to only one persomn.
=1

In general, sum of all jobs assigned to j® person = 1

ie.,

ZX,j =
i=j

1

And sum of all persons with ith job =1

ie.,

n
E X, =

i
i=j

And initial basic feasible solution can be found out by following:

1. Reduction Theorem

2. Hungarian Approach

Similarly, many real life problems can be solved such as assigning number of classes, for
number of rooms, number of drivers to number of trucks or vice versa, number of teachers to
number of classes, etc.

Reduction Theorem can be used for solving assignment problems with an objective of
minimization of costs. For such maximization assignment problems, commonly used rules are:

1. Blind fold assignment/assignment by intuition.

2. Converting the maximization problem into minimization by considering the largest
element in the whole matrix.

3. Converting the maximization problem into minimization by using negative signs for all
the elements in the profit matrix.

Types of Assignment Problem

The assignment problems are of two types. It can be either
(i) Balanced or
(ii) Unbalanced.

It the number of rows is equal to the number of columns or if the given problem is a square
matrix, the problem is termed as a balanced assigiment problem. If the given problem is not a
square matrix, the problem is termed as an unbalanced assignment problem.

If the problem is an unbalanced one, add dummy rows /dummy columns as required so that the
matrix becomes a square matrix or a balanced one. The cost or time values for the dummy cells
are assumed as zero.

Mathematical Formulation of AP

Minimize the total cost which is given by,

Z= Z ZCUXIJ'

=1 j=1

X, =1 (One job is done by one worker)
=0 (No job is assigned)
IX;= 1 (only one job be assigned to one person)
Where,j=12,3, n
IX;= 1 (only one person can do one job at a time)
Where, i=1, 2, 3,.........11

C, — indicates the cost of assigning i* job to j* individual or vice versa, Vi, =1 to n.

X; — indicates whether i* job is assigned to j* person or not.

X, = 1ifi"job is assigned to j* person ‘0" otherwise.
Theorem Statement
It states that in an assignment problem if we add or subtract a constant to every element of any

row or column of the cost matrix (Cij), then an assignment that minimizes the total cost on one
matrix will also minimize the total cost on the other matrix.

Proof:
Let Xi]. = Xi]. Xl_]. = elements of first cost matrix.
Xl_]. = elements of second cost matrix.
2= >CX,:X, 20
=1 =1
7= Z[_C-l,- X, =V, _]X.lj
=1 jkl

Xi]. =1=123. ... n
j=L23....... n

U - i™ row constant taken for reduction.
V, = j™ column constant taken for reduction.
Where, U and Vj are considered to be constant.

2,-3 30X, LU X, -IVIX,

i=1 j=1 j=1 j=1

z, :Z—iUi—iVj
j=1

1-1

> X, = x, =1

Since, terms that are subtracted from "Z’ to give 'Z," are independent of x, it follows that ‘Z" is
minimized whenever ‘Z " is minimized and it can be proved conversely.

Eg

Find the minimum cost for the following problem:

Persons
I IT IT1 v
A 10 12 19 11
fasks B 5 10 7 8
C 12 14 13 11
D G 15 11 9
(i) Row-wise reduction (ii) Column-wise reduction
I il I v I I 11l v
A 0 2 9 1 A 0 E 7 1
B 0 5 2 3 B 0 3 [0] 3
C 1 3 2 0 C 1 T | o 0
D 0 7 3 1 D 5 1 1
Hence, the assignment is
A — I1 12
B — 11 o7
C — v 11
D — I 08
T 38
Here minimized cost = ZZ C X =% 38

Special Case in Assignment Problems

Maximization Case in Assignment Problem

In maximization problem, the objective is to maximize profit, revenue, etc. Such problems can
be solved by converting the given maximization problem into a minimization problem.

1. Change the signs of all values given in the table or another method is,

2. Select the highest element in the entire assignment table and subtract all the elements of
the table from the highest element.

Alpha Corporation has 4 plants, each of which can manufacture any one of the 4 products.
Production cost ditfers from one plant to another plant, so also the sales revenue. Given the
revenue and the cost data below, obtain which product each plant should produce to maximize
the profit.

Sales revenue (€ in 000s)

Product 1 2 3 4
Plant A 50 68 49 62
B 60 70 51 74
C 55 67 53 70
D 58 65 54 69
Production Cost (€ in" 000s)
Product 1 2 3 4
Plant A 49 60 45 6l
B b 63 45 69
C 52 62 49 65
D 55 64 48 66
Solution:
Step 1: Determination of profit matrix.
Product 1 2 3 4
Plant A 1 8 4 1
B 5 7 6 5
C 3 5 4 2
D 3 1 6 3

Step 2: Conversion of profit matrix into cost matrix.

Product 1 2 3 4

Plant A 7 0 4 7

B 3 1 2 3

C 5 3 4 6

D 5 7 2 5

Using Reduction Rules
Step 3: Row-wise reduction of the matrix.

Product 1 2 3 4

Plant A 7 0 4 7

B 2 0 1 2

C 2 0 1 3

D 3 5 0 3

Step 4: Column-wise reduction of the matrix.
Product 1 2 3 4
Plant A 5 0 4
B 0 0 1 0
C 0 0 1 1
D 1 5 0 1
Step 5: Trial Assignment.
Product 1
Plant 5

2
Lo

0

0

ol Mol Ne-N W=

-

[

= = IH ()] H=

Step 6: Determination of profit associated with the assignment.

Plant Product Total Profit (Rs.)
A 2 8,000
B 4 5,000
C 1 3,000
D 3 6,000
Total Profit 22,000

REVIEW QUESTIONS

1) Define assignment problem.

2) Define IBFS.

3) Write algorithm for VAM method.

4) Write the mathematical formulation of TP.
5) What is meant by unbalanced TP.

6) Write the steps for assignment problem.

	UNIT-I.pdf
	UNIT-II.pdf
	UNIT-III.pdf
	UNIT-IV.pdf
	UNIT-V.pdf

